Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/152691
Campo DC Valoridioma
dc.contributor.authorGuedes Guedes, Isabel Inmaculadaen_US
dc.contributor.authorSaavedra Santana, Pedroen_US
dc.contributor.authorCabrera López, Francisco Antonioen_US
dc.contributor.authorRamos Macías, Ángel Manuelen_US
dc.contributor.authorDe Miguel, Ángel Ramosen_US
dc.contributor.authorGonzález Hernández, Ayozeen_US
dc.date.accessioned2025-12-01T15:56:46Z-
dc.date.available2025-12-01T15:56:46Z-
dc.date.issued2025en_US
dc.identifier.issn2056-9920en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/152691-
dc.description.abstractObjective or purposeTo evaluate the diagnostic performance and agreement of the EyeArt (R) Artificial Intelligence (AI) system for detecting Diabetic Retinopathy (DR), comparing its results with ophthalmologists' assessments in a regional screening program.DesignCross-sectional observational study.Subjects, participants, and/or controlsA total of 498 diabetic patients aged 18 years or older were enrolled between June and September 2023 through the Retisalud DR screening program in the Canary Islands. No separate control group was included.MethodsAll participants underwent non-mydriatic fundus photography using the TRC-NW400 camera. Retinal images were analyzed by the EyeArt (R) AI system (version 2.1.0), and results were compared with assessments by ophthalmologists based on the International Clinical Diabetic Retinopathy scale (ICDR). Agreement was quantified using Cohen's kappa coefficient. Additionally, mixed-effects logistic regression was used to explore associations between DR and clinical risk factors.Main outcome measuresSensitivity, specificity, and agreement (Cohen's kappa) of the AI system compared to clinical diagnosis; predictors of DR such as age, diabetes duration, presence of Diabetic Macular Edema (DME), and central retinal thickness (CRT-OCT).ResultsThe EyeArt (R) system achieved a binocular sensitivity of 100% (95% CI: 98.1-100) and a specificity of 93.5% (95% CI: 90.2-96.0). Agreement with ophthalmologist grading was excellent, with kappa values of 0.966 (right eye) and 0.978 (left eye). Younger age, longer diabetes duration, DME presence, and higher CRT were significantly associated with DR diagnosis.ConclusionsThe EyeArt (R) AI system showed excellent diagnostic accuracy and strong agreement with clinical evaluations in DR screening. Nonetheless, its tendency to overestimate DR severity indicates the need for further refinement of its grading algorithm. These findings support the potential integration of AI systems into large-scale DR screening programs, pending further validation.en_US
dc.languageengen_US
dc.relation.ispartofInternational Journal Of Retina And Vitreousen_US
dc.sourceInternational Journal Of Retina And Vitreous [eISSN 2056-9920], v. 11 (1), (Noviembre 2025)en_US
dc.subject32 Ciencias médicasen_US
dc.subject321309 Cirugía ocularen_US
dc.subject.otherImage Assessment Softwareen_US
dc.subject.otherMajor Risk-Factorsen_US
dc.subject.otherArtificial-Intelligenceen_US
dc.subject.otherGlobal Prevalenceen_US
dc.subject.otherTelemedicineen_US
dc.subject.otherDiabetic Retinopathyen_US
dc.subject.otherArtificial Intelligenceen_US
dc.subject.otherAutomated Diabetic Retinopathyen_US
dc.subject.otherArtificial Intelligence Detection Of Diabetic Retinopathyen_US
dc.subject.otherAutomated Retinal Imageen_US
dc.titleEvaluation of the degree of agreement in the diagnosis of diabetic retinopathy between ophthalmologists and EyeArt®en_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/s40942-025-00748-4en_US
dc.identifier.scopus105022473890-
dc.identifier.isi001619308100001-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid60104002000-
dc.contributor.authorscopusid56756025600-
dc.contributor.authorscopusid57208101309-
dc.contributor.authorscopusid7103172103-
dc.contributor.authorscopusid56848284600-
dc.contributor.authorscopusid60029260600-
dc.identifier.eissn2056-9920-
dc.identifier.issue1-
dc.relation.volume11en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages15en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Guedes, IIG-
dc.contributor.wosstandardWOS:Santana, PS-
dc.contributor.wosstandardWOS:Lopez, FC-
dc.contributor.wosstandardWOS:Macías, AR-
dc.contributor.wosstandardWOS:de Miguel, AR-
dc.contributor.wosstandardWOS:Hernández, AG-
dc.date.coverdateNoviembre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR SIANI: Ingeniería biomédica aplicada a estimulación neural y sensorial-
crisitem.author.deptIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.deptGIR SIANI: Ingeniería biomédica aplicada a estimulación neural y sensorial-
crisitem.author.deptIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.orcid0000-0003-1681-7165-
crisitem.author.orcid0000-0002-5074-5102-
crisitem.author.orcid0000-0002-4709-5559-
crisitem.author.orcid0000-0002-0528-815X-
crisitem.author.parentorgIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.parentorgIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.parentorgIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.fullNameGuedes Guedes, Isabel Inmaculada-
crisitem.author.fullNameSaavedra Santana, Pedro-
crisitem.author.fullNameCabrera López, Francisco Antonio-
crisitem.author.fullNameRamos Macías, Ángel Manuel-
crisitem.author.fullNameRamos De,Ángel-
Colección:Artículos
Adobe PDF (1,63 MB)
Vista resumida

Visitas

2
actualizado el 11-ene-2026

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.