Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/151706
Título: Comparative Study of Route Algorithms Applied to Drones
Autores/as: Molina Gil, Jezabel
Aguasca Colomo, Ricardo 
Dorta Luis, José Gregorio
Clasificación UNESCO: 120304 Inteligencia artificial
Fecha de publicación: 2025
Editor/a: IFSA Publishing, S. L.
Conferencia: 7th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI 2025) 
Resumen: This research explores the implementation of advanced path-planning algorithms, enhanced by Artificial Intelligence (AI), to optimize drone missions for rescue and exploration purposes. By leveraging AI-driven heuristics, the study addresses key challenges such as route efficiency, environmental adaptability, and resource utilization. The developed application, integrates user-friendly interfaces with interactive mapping, enabling customization of mission parameters like wind conditions, altitude, and drone autonomy. Tested algorithms, including Nearest Neighbor Traversal and its variations, demonstrated diverse performance strengths, with AI playing a pivotal role in overcoming local optima and improving overall results. The research highlights the transformative potential of combining AI with drone technology to enhance operational efficiency in critical scenarios. Future work aims to address computational limitations and expand adaptability for complex environments.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/151706
ISBN: 978-84-09-71189-5
ISSN: 2938-5350
Colección:Actas de congresos
Adobe PDF (12,83 MB)
Adobe PDF (344,12 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.