Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/151627
Título: MCR-SL: A Multimodal, Context-Rich Skin Lesion Dataset for Skin Cancer Diagnosis
Autores/as: Castro Fernández, María 
Schopf, Thomas Roger
Castano-Gonzalez, Irene
Roque-Quintana, Belinda
Kirchesch, Herbert
Ortega Sarmiento, Samuel 
Fabelo Gómez, Himar Antonio 
Godtliebsen, Fred
Granja, Conceicao
Marrero Callicó, Gustavo Iván 
Palabras clave: Classification
Skin Cancer
Multimodal
Clinical Data
Dermoscopy, et al.
Fecha de publicación: 2025
Publicación seriada: Data 
Resumen: Well-annotated datasets are fundamental for developing robust artificial intelligence models, particularly in medical fields. Many existing skin lesion datasets have limitations in image diversity (including only clinical or dermoscopic images) or metadata, which hinder their utility for mimicking real-world clinical practice. The purpose of the MCR-SL dataset is to introduce a new, meticulously curated dataset that addresses these limitations. The MCR-SL dataset was collected from 60 subjects at the University Hospital of North Norway and comprises 779 clinical images and 1352 dermoscopic images of 240 unique lesions. The lesion types included are nevus, seborrheic keratosis, basal cell carcinoma, actinic keratosis, atypical nevus, melanoma, squamous cell carcinoma, angioma, and dermatofibroma. Labels were established by combining the consensus of a panel of four dermatologists with histopathology reports for the 29 excised lesions, with the latter serving as the gold standard. The resulting dataset provides a comprehensive resource with clinical and dermoscopic images and rich clinical context, ensuring a high level of clinical relevance, surpassing many existing resources in that matter. The MCR-SL dataset provides a holistic and reliable foundation for validating artificial intelligence models, enabling a more nuanced and clinically relevant approach to automated skin lesion diagnosis that mirrors real-world clinical practice.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/151627
ISSN: 2306-5729
DOI: 10.3390/data10100166
Fuente: Data [EISSN 2306-5729], v. 10 (10), (Octubre 2025)
Colección:Artículos
Adobe PDF (2,27 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.