Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/151478
Campo DC Valoridioma
dc.contributor.authorDjaffal, Souhailaen_US
dc.contributor.authorBenmabrouk, Yasminaen_US
dc.contributor.authorDjeddi, Chawkien_US
dc.contributor.authorDiaz, Moisesen_US
dc.date.accessioned2025-11-10T16:28:02Z-
dc.date.available2025-11-10T16:28:02Z-
dc.date.issued2025en_US
dc.identifier.issn0302-9743en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/151478-
dc.description.abstractEffective script identification is pivotal in document analysis and recognition, especially when dealing with hybrid multiscript documents at fine-grained levels. Recent advancements in deep learning models have revolutionized document analysis and recognition tasks, leveraging script document images. However, these images often require resizing, which can result in data loss. This paper explores the impact of MULLER, a learnable resizer on a hybrid word-level script identification task using the Multi-lingual and Multi-script Documents In the Wild (MDIW-13) dataset. Our approach integrates MULLER resizer with a pre-module that employs k-means clustering to determine the optimal target size. When jointly trained with MobileNet, it achieves an impressive average accuracy of 98.16%. In summary, our findings underscore the potential of the MULLER resizer to outperform conventional resizers, thereby evaluating script classification performance.en_US
dc.languageengen_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourcePattern Recognition. ICPR 2024. Lecture Notes in Computer Science [ISSN 0302-9743],v. 15331, p. 222-236, (2025)en_US
dc.subject330405 Sistemas de reconocimiento de caracteresen_US
dc.subject.otherMachine-printed texten_US
dc.subject.otherHybrid word level script identificationen_US
dc.subject.otherMuller resizeren_US
dc.subject.otherConventional resizersen_US
dc.subject.otherMdiw-13 dataseten_US
dc.subject.otherMobilenet modelen_US
dc.titleBreaking boundaries: enhancing script identification using a learnable MULLER resizeren_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference27th International Conference on Pattern Recognition (ICPR 2024)en_US
dc.identifier.doi10.1007/978-3-031-78119-3_16en_US
dc.identifier.isi001565130700016-
dc.identifier.eissn1611-3349-
dc.description.lastpage236en_US
dc.description.firstpage222en_US
dc.relation.volume15331en_US
dc.investigacionCienciasen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages15en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Djaffal, S-
dc.contributor.wosstandardWOS:Benmabrouk, Y-
dc.contributor.wosstandardWOS:Djeddi, C-
dc.contributor.wosstandardWOS:Diaz, M-
dc.date.coverdate2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr0,606
dc.description.sjrqQ2
dc.description.miaricds10,0
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.event.eventsstartdate01-12-2024-
crisitem.event.eventsenddate05-12-2024-
Colección:Actas de congresos
Vista resumida

Visitas

104
actualizado el 16-ene-2026

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.