Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/150521
Título: Heterogeneous Transfer Learning in Sports: Human Action Recognition for Gender and Outcome Prediction
Autores/as: Torón Artiles, Javier
Hernández Sosa, José Daniel 
Santana Jaria, Oliverio Jesús 
Lorenzo Navarro, José Javier 
Freire Obregón, David Sebastián 
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Computer vision
Domain evaluation
Gender classification
Human action recognition
Soccer, et al.
Fecha de publicación: 2025
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 13th International Conference Pattern Recognition Applications and Methods (ICPRAM 2024)
Resumen: This research explores the application of heterogeneous transfer learning to achieve dual objectives: gender classification and ball-on-goal position prediction (BoGP) in soccer, by analyzing players’ physical actions during free kicks. Leveraging a curated dataset of soccer players executing free kicks with manual temporal segmentation, we applied pre-trained Human Action Recognition (HAR) models from the Kinetics-400 dataset. These models were adapted for our specific tasks using transfer learning techniques, minimizing the need for extensive domain-specific data. Eleven HAR backbones were evaluated for their effectiveness in both tasks. The gender classification model achieved an accuracy of 75.4%, while the BoGP model demonstrated 69.1% accuracy in predicting the ball’s direction (left or right). Additionally, we examined each HAR backbone’s overall performance on gender classification and BoGP prediction, revealing significant insights into the interplay between these tasks. This study highlights the versatility and robustness of HAR models in heterogeneous transfer learning.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/150521
ISBN: 978-3-032-06006-8
ISSN: 0302-9743
DOI: 10.1007/978-3-032-06007-5_2
Fuente: Pattern Recognition Applications and Methods. ICPRAM 2024. Lecture Notes in Computer Science, vol 15568, p. 13–28, Springer, Cham.
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.