Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/150436
Título: Gait-Based Prediction of Penalty Kick Direction in Soccer
Autores/as: Freire Obregón, David Sebastián 
Santana Jaria, Oliverio Jesús 
Lorenzo Navarro, José Javier 
Hernández Sosa, José Daniel 
Castrillón Santana, Modesto Fernando 
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Penalty Kick Prediction
Soccer Analytics
Gait Analysis
LSTM
Action Anticipation, et al.
Fecha de publicación: 2025
Editor/a: SciTePress Digital Library 
Conferencia: 13th International Conference on Sport Sciences Research and Technology Support icSPORTS (2025)
Resumen: Understanding and predicting penalty kick outcomes is critical in performance analysis and strategic decision-making in soccer. This study investigates the potential of gait-based biometrics to classify the intended shoot zone of penalty takers using temporal gait embeddings extracted from multiple state-of-the-art gait recognition backbones. We compile a comprehensive evaluation across several models and datasets, including baseline models and other models such as GaitPart, GLN, GaitSet, and GaitGL trained on OUMVLP, CASIA-B, and GREW. A standardized LSTM-based classifier is trained to predict the shooting zone from video-level gait sequences, using consistent train-test splits to ensure fair comparisons. While performance varies across model-dataset pairs, we observe that certain combinations yield better predictive accuracy, suggesting that the gait representation and the training data influence downstream task performance to some degree. This work demonstrates the feasibility of using gait as a predictive cue in sports analytics. It offers a structured benchmark for evaluating gait embeddings in the context of penalty shoot zone prediction.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/150436
ISBN: 978-989-758-771-9
ISSN: 2184-4313
DOI: 10.5220/0013669900003988
Fuente: In Proceedings of the 13th International Conference on Sport Sciences Research and Technology Support icSPORTS - Vol. 1, p. 142-149, 2025 , Marbella, Spain
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.