Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/149478
Título: SynPalms: Palm Identification with Synthetic Data
Autores/as: Tomašević, Darian
Špacapan, Blaž
Perušić, Ani
Pinčić, Domagoj
Meden, Blaž
Freire Obregón, David Sebastián 
Emeršič, Žiga
Štruc, Vitomir
Peer, Peter
Sušanj, Diego
Clasificación UNESCO: 2405 Biometría
Fecha de publicación: 2025
Editor/a: IEEEXPLORE
Conferencia: 16th International Conference on Ubiquitous and Future Networks (ICUFN 2025) 
Resumen: Person identification systems based on biometric modalities, such as hand images, require extensive and diverse datasets for effective training. However, real-world datasets are often limited in size and variability, leading to poor generalization, while strict privacy regulations constrain their sharing and use. To address these issues, we introduce the SynPalms framework, an approach for generating diverse palmar-side hand images of novel synthetic identities achieved with identity mixing during sampling. We investigate the impact of synthetic data on a ResNet50-based identification system by comparing the classification accuracy obtained when training with either realworld or synthetic images, as well as when utilizing both real and synthetic data. Our experiments demonstrate the trade-off between classification accuracy and subject privacy, highlighting the potential of synthetic data for training biometric identification systems in a privacy-preserving manner.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/149478
ISBN: 979-8-3315-2487-6
DOI: 10.1109/ICUFN65838.2025.11169785
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.