Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/149475
Campo DC Valoridioma
dc.contributor.authorSuárez Alfonso, Daniel Jesúsen_US
dc.contributor.authorRuiz-García, A.en_US
dc.contributor.authorKhayet, M.en_US
dc.date.accessioned2025-10-07T10:49:57Z-
dc.date.available2025-10-07T10:49:57Z-
dc.date.issued2025en_US
dc.identifier.issn0960-1481en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/149475-
dc.description.abstractPressure-retarded osmosis (PRO) involves a high concentration solution that is circulated through a semipermeable membrane and used to draw water permeate from a lower concentration solution by osmosis. PRO is a membrane-driven process in which the chosen membrane module plays a significant role in energy harvesting. This study aims to evaluate the effect of flow rate, pressure and concentration of draw solutions (30–180 g L−1) on the performance of a full-scale PRO process and by incorporating the characteristics of a 10-inch hollow fiber membrane module from Toyobo Company Ltd. A single-stage PRO system with up to 3 membranes in series in a pressure vessel was considered, and the consumption of the pumps and energy recovery devices were taken into consideration. The results show the optimal operating conditions that maximize net power while varying the draw solution concentration and pressure and both water stream flow rates. A net power density of 2.56 W m−2 was achieved for the concentration gradient of 179.5 g L−1. The present work concludes that single-stage full-scale PRO systems would be energetically feasible, although the results obtained need to be compared with an experimental plant taking into account membrane tear and fouling.en_US
dc.languageengen_US
dc.relation.ispartofRenewable Energyen_US
dc.sourceRenewable Energy[ISSN 0960-1481],v. 256, (Enero 2026)en_US
dc.subject.otherBlue Energyen_US
dc.subject.otherEnergy Harvestingen_US
dc.subject.otherMembranesen_US
dc.subject.otherPressure Retarded Osmosisen_US
dc.subject.otherRenewable Energy Resourcesen_US
dc.titleOptimization of energy extraction from salinity gradient using full-scale pressure retarded osmosis systems with hollow fiber membrane modulesen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.renene.2025.124344en_US
dc.identifier.scopus105016892244-
dc.contributor.orcid0009-0005-5935-8714-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid60112182200-
dc.contributor.authorscopusid55749145800-
dc.contributor.authorscopusid56517090400-
dc.identifier.eissn1879-0682-
dc.relation.volume256en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2026en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,923
dc.description.jcr9,0
dc.description.sjrqQ1
dc.description.jcrqQ1
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR Energía, Corrosión, Residuos y Agua-
crisitem.author.deptGIR Energía, Corrosión, Residuos y Agua-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0009-0005-5935-8714-
crisitem.author.orcid0000-0002-5209-653X-
crisitem.author.parentorgDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.parentorgDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.fullNameSuárez Alfonso, Daniel Jesús-
crisitem.author.fullNameRuiz García, Alejandro-
Colección:Artículos
Adobe PDF (1,84 MB)
Vista resumida

Visitas

2
actualizado el 10-ene-2026

Descargas

1
actualizado el 10-ene-2026

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.