Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/148756
Campo DC Valoridioma
dc.contributor.authorDorta González, Pabloen_US
dc.date.accessioned2025-09-24T12:21:33Z-
dc.date.available2025-09-24T12:21:33Z-
dc.date.issued2025en_US
dc.identifier.issn1824-2049en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/148756-
dc.description.abstractThis study explores how YouTube content creators integrate scientific evidence into their videos by analyzing citation patterns across disciplines. The role of other alternative metrics is also considered. We apply Principal Component Analysis (PCA) to compare the citation count of 12,005 research articles from Biotechnology, Psychology, Astrophysics, and Ecology published between 2014 and 2023, including citations sourced from YouTube videos. Our findings provide a characterization of two principal components in evidence citation employed by various science communication stakeholders. The first component enhances a paper's visibility by driving social attention, while the second focuses on its social influence and impact, determined by the paper's quality and scientific relevance.en_US
dc.languageengen_US
dc.relation.ispartofJournal of Science Communicationen_US
dc.sourceJcom-Journal Of Science Communication[ISSN 1824-2049],v. 24 (4), (2025)en_US
dc.subject570106 Documentaciónen_US
dc.subject.otherSocietal Impacten_US
dc.subject.otherScience And Mediaen_US
dc.subject.otherVisual Communicationen_US
dc.subject.otherDigital Science Communicationen_US
dc.titleThe evidence citation patterns of video creators and their relationships with other science communicatorsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.22323/150420250721104528en_US
dc.identifier.isi001567966900003-
dc.identifier.issue4-
dc.relation.volume24en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.description.numberofpages17en_US
dc.utils.revisionen_US
dc.date.coverdate2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-ECOen_US
dc.description.sjr0,514
dc.description.sjrqQ2
dc.description.esciESCI
dc.description.miaricds9,8
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.orcid0000-0003-0494-2903-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNameDorta González, Pablo-
Colección:Artículos
Adobe PDF (1,34 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.