Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/147096
DC FieldValueLanguage
dc.contributor.authorBrescia, Francescoen_US
dc.contributor.authorAleman Santana, Belen Estheren_US
dc.contributor.authorDiaz, Moisesen_US
dc.contributor.authorVessio, Gennaroen_US
dc.contributor.authorFerrer, Miguel Ángelen_US
dc.contributor.authorCastellano, Giovannaen_US
dc.date.accessioned2025-09-16T06:25:38Z-
dc.date.available2025-09-16T06:25:38Z-
dc.date.issued2025en_US
dc.identifier.issn1746-8094en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/147096-
dc.description.abstractDysgraphia, a learning disorder affecting handwriting fluency and legibility, can significantly hamper children's academic development. Early and accurate classification is essential for timely intervention and tailored educational support. This study presents a novel deep learning framework that integrates robotic kinematic and dynamic features from a robotic arm replicating handwriting with traditional online kinematic and temporal features extracted from digitized writing samples. By integrating these complementary features, we aim to enhance dysgraphia classification by capturing detailed handwriting patterns. We transform the multidimensional time-series data into a structured tabular format and process each feature set independently using TabNet, a deep learning model optimized for tabular data. To maximize classification performance, we employ a Tanh-based score fusion strategy, dynamically balancing the contributions of both models. Evaluations on a publicly available dysgraphia dataset demonstrate state-of-the-art performance, achieving 91.7% accuracy and 95.2% precision on the most comprehensive classification task. These results highlight the effectiveness of robotic motion analysis in improving handwriting-based dysgraphia classification, offering a promising tool for clinical and educational screening.en_US
dc.languageengen_US
dc.relation.ispartofBiomedical Signal Processing and Controlen_US
dc.sourceBiomedical Signal Processing and Control[ISSN 1746-8094],v. 112, (Febrero 2026)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherDysgraphia Classificationen_US
dc.subject.otherFeature Fusionen_US
dc.subject.otherHandwriting Analysisen_US
dc.subject.otherRobotic Featuresen_US
dc.titleIntegrating robotic kinematics and dynamics with online handwriting features for dysgraphia classificationen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.bspc.2025.108560en_US
dc.identifier.scopus105013280511-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0003-3878-3867-
dc.contributor.orcid0000-0002-0883-2691-
dc.contributor.orcid0000-0002-2924-1225-
dc.contributor.orcid0000-0002-6489-8628-
dc.contributor.authorscopusid56351891700-
dc.contributor.authorscopusid60047153300-
dc.contributor.authorscopusid59538688500-
dc.contributor.authorscopusid56407135000-
dc.contributor.authorscopusid55636321172-
dc.contributor.authorscopusid7005355310-
dc.identifier.eissn1746-8108-
dc.relation.volume112en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
local.message.claim2026-01-21T11:16:19.199+0000|||rp07365|||submit_approve|||dc_contributor_author|||None*
dc.utils.revisionen_US
dc.date.coverdateFebrero 2026en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,284
dc.description.jcr4,9
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,7
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.fullNameAleman Santana, Belen Esther-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Appears in Collections:Artículos
Adobe PDF (2,93 MB)
Show simple item record

Download(s)

5
checked on Jan 11, 2026

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.