Please use this identifier to cite or link to this item:
https://accedacris.ulpgc.es/jspui/handle/10553/147096
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Brescia, Francesco | en_US |
| dc.contributor.author | Aleman Santana, Belen Esther | en_US |
| dc.contributor.author | Diaz, Moises | en_US |
| dc.contributor.author | Vessio, Gennaro | en_US |
| dc.contributor.author | Ferrer, Miguel Ángel | en_US |
| dc.contributor.author | Castellano, Giovanna | en_US |
| dc.date.accessioned | 2025-09-16T06:25:38Z | - |
| dc.date.available | 2025-09-16T06:25:38Z | - |
| dc.date.issued | 2025 | en_US |
| dc.identifier.issn | 1746-8094 | en_US |
| dc.identifier.other | Scopus | - |
| dc.identifier.uri | https://accedacris.ulpgc.es/jspui/handle/10553/147096 | - |
| dc.description.abstract | Dysgraphia, a learning disorder affecting handwriting fluency and legibility, can significantly hamper children's academic development. Early and accurate classification is essential for timely intervention and tailored educational support. This study presents a novel deep learning framework that integrates robotic kinematic and dynamic features from a robotic arm replicating handwriting with traditional online kinematic and temporal features extracted from digitized writing samples. By integrating these complementary features, we aim to enhance dysgraphia classification by capturing detailed handwriting patterns. We transform the multidimensional time-series data into a structured tabular format and process each feature set independently using TabNet, a deep learning model optimized for tabular data. To maximize classification performance, we employ a Tanh-based score fusion strategy, dynamically balancing the contributions of both models. Evaluations on a publicly available dysgraphia dataset demonstrate state-of-the-art performance, achieving 91.7% accuracy and 95.2% precision on the most comprehensive classification task. These results highlight the effectiveness of robotic motion analysis in improving handwriting-based dysgraphia classification, offering a promising tool for clinical and educational screening. | en_US |
| dc.language | eng | en_US |
| dc.relation.ispartof | Biomedical Signal Processing and Control | en_US |
| dc.source | Biomedical Signal Processing and Control[ISSN 1746-8094],v. 112, (Febrero 2026) | en_US |
| dc.subject | 3314 Tecnología médica | en_US |
| dc.subject.other | Deep Learning | en_US |
| dc.subject.other | Dysgraphia Classification | en_US |
| dc.subject.other | Feature Fusion | en_US |
| dc.subject.other | Handwriting Analysis | en_US |
| dc.subject.other | Robotic Features | en_US |
| dc.title | Integrating robotic kinematics and dynamics with online handwriting features for dysgraphia classification | en_US |
| dc.type | info:eu-repo/semantics/Article | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1016/j.bspc.2025.108560 | en_US |
| dc.identifier.scopus | 105013280511 | - |
| dc.contributor.orcid | NO DATA | - |
| dc.contributor.orcid | NO DATA | - |
| dc.contributor.orcid | 0000-0003-3878-3867 | - |
| dc.contributor.orcid | 0000-0002-0883-2691 | - |
| dc.contributor.orcid | 0000-0002-2924-1225 | - |
| dc.contributor.orcid | 0000-0002-6489-8628 | - |
| dc.contributor.authorscopusid | 56351891700 | - |
| dc.contributor.authorscopusid | 60047153300 | - |
| dc.contributor.authorscopusid | 59538688500 | - |
| dc.contributor.authorscopusid | 56407135000 | - |
| dc.contributor.authorscopusid | 55636321172 | - |
| dc.contributor.authorscopusid | 7005355310 | - |
| dc.identifier.eissn | 1746-8108 | - |
| dc.relation.volume | 112 | en_US |
| dc.investigacion | Ingeniería y Arquitectura | en_US |
| dc.type2 | Artículo | en_US |
| local.message.claim | 2026-01-21T11:16:19.199+0000|||rp07365|||submit_approve|||dc_contributor_author|||None | * |
| dc.utils.revision | Sí | en_US |
| dc.date.coverdate | Febrero 2026 | en_US |
| dc.identifier.ulpgc | Sí | en_US |
| dc.contributor.buulpgc | BU-TEL | en_US |
| dc.description.sjr | 1,284 | |
| dc.description.jcr | 4,9 | |
| dc.description.sjrq | Q1 | |
| dc.description.jcrq | Q1 | |
| dc.description.scie | SCIE | |
| dc.description.miaricds | 10,7 | |
| item.fulltext | Con texto completo | - |
| item.grantfulltext | open | - |
| crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
| crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC) | - |
| crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
| crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC) | - |
| crisitem.author.dept | Departamento de Física | - |
| crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
| crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC) | - |
| crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
| crisitem.author.orcid | 0000-0003-3878-3867 | - |
| crisitem.author.orcid | 0000-0002-2924-1225 | - |
| crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC) | - |
| crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC) | - |
| crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC) | - |
| crisitem.author.fullName | Aleman Santana, Belen Esther | - |
| crisitem.author.fullName | Díaz Cabrera, Moisés | - |
| crisitem.author.fullName | Ferrer Ballester, Miguel Ángel | - |
| Appears in Collections: | Artículos | |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.