Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/147001
Campo DC Valoridioma
dc.contributor.authorMarrero, Aníbalen_US
dc.contributor.authorSantana Rodríguez, Juan Joseen_US
dc.contributor.authorGreiner Sánchez, David Juanen_US
dc.date.accessioned2025-09-15T08:43:48Z-
dc.date.available2025-09-15T08:43:48Z-
dc.date.issued2024en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/147001-
dc.description.abstractCorrosion is a worldwide spread problem which it is estimated to have a direct cost of over 3% of the world Gross Domestic Product annually. The experts on corrosion point out that up to 25% of costs caused by corrosion annually can be saved if currently available corrosion control techniques are applied. Organic coatings are a widely studied and applied technique for extending the life span of metals exposed to various environmental conditions. The performance and behaviour of the organic coatings against corrosion can be tested with techniques such as Electrochemical Impedance Spectroscopy (EIS). Thus, information on the electrochemical behaviour of the metal–coating system, as well as the presence of pores and defects, can be extracted from EIS data analysis. EIS experimental data modelling can be achieved using several commercial software packages that utilize non-linear regression algorithms with accurate fits. However, they are highly dependent of initial values for parameters and hence present serious problem of convergence to the optimum. Evolutionary algorithms (EAs) do not show these problems and have been proven to be a robust solution in the optimization field. In previous works [1], electrochemical systems, consisting of a coated metal probe in contact with a test solution, were modeled by means of two time–constants equivalent electrical circuits, obtaining very accurate fits. In this work, more complex systems characterized by three time constants are modeled by using state of the art differential evolution approaches. Results are promising, and it is expected in the near future that EAs based optimization methods prevail in the field of electrochemical systems modelling, such as coatings or batteries.en_US
dc.languageengen_US
dc.relationMCIN/AEI/10.13039/501100011033/FEDER, UE under Grant PID2021-127445NB-I00.en_US
dc.sourceModelling, Data Analytics and AI in Engineering Conference: Book Abstractsen_US
dc.subject3328 Procesos tecnológicosen_US
dc.subject1206 Análisis numéricoen_US
dc.titleImproving corrosion data modelling through an evolutionary algorithm approachen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceModelling, Data Analytics and AI in Engineering (MADEAI 2024)en_US
dc.description.firstpage30en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.date.coverdate2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.orcid0000-0002-4132-7144-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameSantana Rodríguez, Juan Jose-
crisitem.author.fullNameGreiner Sánchez, David Juan-
Colección:Actas de congresos
Adobe PDF (100,23 kB)
Vista resumida

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.