Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/145965
Campo DC Valoridioma
dc.contributor.authorLara-Abelenda, Francisco J.en_US
dc.contributor.authorChushig-Muzo, Daviden_US
dc.contributor.authorBetancort Acosta, Carmeloen_US
dc.contributor.authorWägner, Anna Maria Claudiaen_US
dc.contributor.authorGranja, Conceiçãoen_US
dc.contributor.authorSoguero-Ruiz, Cristinaen_US
dc.date.accessioned2025-09-01T08:53:51Z-
dc.date.available2025-09-01T08:53:51Z-
dc.date.issued2025en_US
dc.identifier.issn2169-3536en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/145965-
dc.description.abstractType 1 Diabetes (T1D) is an autoimmune condition that results in an insulin deficiency. People with T1D require the administration of exogenous insulin to maintain target glucose levels. However, insulin therapy can cause hypoglycemic episodes, which occur when blood glucose levels fall below 70 mg/dL. Nocturnal Hypoglycemia (NH) occurs while the individual is asleep and can lead to different clinical complications. Developing predictive approaches to predict NH before sleep could reduce these episodes and mitigate acute complications. While numerous models exist for Time Series Classification (TSC), their use for NH prediction remains limited. This study evaluates 14 different TSC models for NH prediction, assessing their performance by evaluating classification metrics, computational time, and environmental impact (measured by energy consumption and CO2 emissions). The approaches include distance-based, convolutional-based, deep learning, dictionary-based, feature-based, shapelet-based, and interval-based methods. We employed glucose data from 52 individuals with T1D. Experimental results showed that interval-based and feature-based approaches achieved the best predictive performance, obtaining the highest Area Under the Curve Operator (AUCROC) of 0.703. Additionally, both demonstrated low environmental impact due to their short computational time. However, substantial differences in environmental impact were observed depending on the approach. Distance-based methods and deep learning approaches exhibited the highest environmental impact. This paper provides key insights into the effectiveness of TSC models for NH prediction, highlighting the trade-off between model performance and environmental impact.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Accessen_US
dc.sourceIEEE Access [EISSN 2169-3536], (Enero 2025)en_US
dc.subject32 Ciencias médicasen_US
dc.subject320502 Endocrinologíaen_US
dc.subject.otherCarbon Footprinten_US
dc.subject.otherContinuous Glucose Monitoringen_US
dc.subject.otherEnvironmental Impacten_US
dc.subject.otherGreen Machine Learningen_US
dc.subject.otherNocturnal Hypoglycemiaen_US
dc.subject.otherTime Series Classificationen_US
dc.subject.otherType 1 Diabetesen_US
dc.titleEvaluating Time Series Classification Models for Nocturnal Hypoglycemia: From Predictive Performance to Environmental Impacten_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2025.3600917en_US
dc.identifier.scopus105013792478-
dc.contributor.orcid0000-0001-5565-8203-
dc.contributor.orcid0000-0001-5585-2305-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-3028-8899-
dc.contributor.orcid0000-0001-5817-989X-
dc.contributor.authorscopusid58896003400-
dc.contributor.authorscopusid57218569405-
dc.contributor.authorscopusid60055963800-
dc.contributor.authorscopusid7401456520-
dc.contributor.authorscopusid36086375600-
dc.contributor.authorscopusid55207356700-
dc.identifier.eissn2169-3536-
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr0,96
dc.description.jcr3,4
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,4
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.orcid0000-0002-7663-9308-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameBetancort Acosta, Carmelo-
crisitem.author.fullNameWägner, Anna Maria Claudia-
Colección:Artículos
Adobe PDF (2,45 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.