Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/145726
Campo DC Valoridioma
dc.contributor.authorEliseo Zárateen_US
dc.contributor.authorAntonio Colmenar Santosen_US
dc.contributor.authorRosales Asensio, Enriqueen_US
dc.date.accessioned2025-08-26T11:57:08Z-
dc.date.available2025-08-26T11:57:08Z-
dc.date.issued2025en_US
dc.identifier.issn2079-9292en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/145726-
dc.description.abstractThe electrification of rural medical centers in high Andean areas represents a critical challenge for equitable development due to limited access to reliable energy. Hybrid Renewable Energy Systems (HRESs), which combine solar photovoltaic generation, Battery Energy Storage Systems (BESSs), and backup diesel generators, are emerging as viable solutions to ensure the supply of critical loads. However, their effective implementation requires optimal sizing methodologies that consider multiple technical and economic constraints and objectives. In this study, an optimization model based on metaheuristic algorithms is developed, specifically, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO), to identify optimal configurations of an HRES applied to a remote medical center in the Peruvian Andes. The results show that GA achieved the lowest Life Cycle Cost (LCC), with a high share of renewable energy (64.04%) and zero Energy Not Supplied (ENS) defined as the amount of load demand not met by the system, significantly outperforming PSO and ACO. GA was also found to offer greater stability and operational robustness. These findings confirm the effectiveness of metaheuristic methods for designing efficient and resilient energy solutions adapted to isolated rural contexts.en_US
dc.languageengen_US
dc.relation.ispartofElectronicsen_US
dc.sourceElectronics [ISNN 2079-9292], v. 14(16), 3273 (agosto 2025)en_US
dc.subject3306 Ingeniería y tecnología eléctricasen_US
dc.subject330506 Ingeniería civilen_US
dc.subject.otherHybrid renewable energy systemsen_US
dc.subject.otherRural electrificationen_US
dc.subject.otherCritical load manage- menten_US
dc.subject.otherMetaheuristic optimizationen_US
dc.subject.otherGenetic algorithmen_US
dc.subject.otherParticle swarm optimizationen_US
dc.subject.otherAnt colony optimizationen_US
dc.subject.otherMedical facilitiesen_US
dc.subject.otherOff-grid systemsen_US
dc.subject.otherAndean regionen_US
dc.titleOptimizing Hybrid Renewable Systems for Critical Loads in Andean Medical Centers Using Metaheuristicsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/electronics14163273en_US
dc.relation.volume14(16), 3273en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages28en_US
dc.utils.revisionen_US
dc.date.coverdateAgosto 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.miaricds6,5
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Eléctrica-
crisitem.author.orcid0000-0003-4112-5259-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameRosales Asensio, Enrique-
Colección:Artículos
Adobe PDF (2,45 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.