Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/144553
Title: The relationship between muscle thickness and pennation angle is mediated by fascicle length in the muscles of the lower extremities
Authors: Martín Rodríguez, Saúl 
González Henríquez, Juan José 
Díaz Conde,Juan Carlos 
López Calbet, José Antonio 
Sanchís Moysi, Joaquín 
UNESCO Clasification: 241110 Fisiología del músculo
Keywords: Femoris Long Head
Vastus Lateralis
Skeletal
Architecture
Adaptations, et al
Issue Date: 2024
Journal: Scientific Reports 
Abstract: Muscle morphological architecture, a crucial determinant of muscle function, has fascinated researchers since the Renaissance. Imaging techniques enable the assessment of parameters such as muscle thickness (MT), pennation angle (PA), and fascicle length (FL), which may vary with growth, sex, and physical activity. Despite known interrelationships, robust mathematical models like causal mediation analysis have not been extensively applied to large population samples. We recruited 109 males and females, measuring knee flexor and extensor, and plantar flexor MT, PA, and FL using real-time ultrasound imaging at rest. A mixed-effects model explored sex, leg (dominant vs. non-dominant), and muscle region differences. Males exhibited greater MT in all muscles (0.1 to 2.1 cm, p < 0.01), with no sex differences in FL. Dominant legs showed greater rectus femoris (RF) MT (0.1 cm, p = 0.01) and PA (1.5 degrees, p = 0.01), while vastus lateralis (VL) had greater FL (1.2 cm, p < 0.001) and PA (0.6 degrees, p = 0.02). Regional differences were observed in VL, RF, and biceps femoris long head (BFlh). Causal mediation analyses highlighted MT's influence on PA, mediated by FL. Moderated mediation occurred in BFlh, with FL differences. Gastrocnemius medialis and lateralis exhibited FL-mediated MT and PA relationships. This study unveils the intricate interplay of MT, FL, and PA in muscle architecture.
URI: https://accedacris.ulpgc.es/handle/10553/144553
ISSN: 2045-2322
DOI: 10.1038/s41598-024-65100-6
Source: Scientific Reports [ISSN 2045-2322], v. 14 (1), (Junio 2024)
Appears in Collections:Artículos
Adobe PDF (2,48 MB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.