Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/143905
Campo DC Valoridioma
dc.contributor.authorRabeti, Seyed Alireza Mousavien_US
dc.contributor.authorManesh, Mohammad Hasan Khoshgoftaren_US
dc.contributor.authorBlanco-Marigorta, Ana Mariaen_US
dc.contributor.authorDel Río-Gamero, B.en_US
dc.date.accessioned2025-07-28T14:44:28Z-
dc.date.available2025-07-28T14:44:28Z-
dc.date.issued2025en_US
dc.identifier.issn0960-1481en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/143905-
dc.description.abstractManaging freshwater and electricity production in islands is vital for sustainability and reducing dependency on external resources, ensuring energy security and environmental protection. This study explores the design, analysis, and feasibility of an innovative biomass-solar cogeneration system that produces both power and freshwater for the Canary Islands, Spain. The proposed system design incorporates a combination of the Brayton cycle, steam Rankine cycle, and organic Rankine cycle for power generation, while integrating multi-effect distillation, reverse osmosis, and membrane distillation desalination for freshwater production. Additionally, a CO2 capture unit is included to minimize environmental pollutant emissions. The solar field provides the necessary heat for the system via the solar tower, while the air-steam gasification unit supplies the required energy for the cycle using biomass. The biomass fuel selected is based on the local forest type, specifically Canary Pine Needles. Machine learning is applied to analyze the subsystems of the proposed system. The feasibility of the proposed system has been evaluated through technical-economic analysis and life cycle assessment. Dynamic modeling was performed based on the climatic conditions of Las Palmas. Finally, a sensitivity analysis and multi-objective optimization were conducted on the system's functional parameters. The objective functions in the optimization process included maximizing cogeneration efficiency, minimizing the payback period, and minimizing the total environmental impact rate. Three multi-objective optimization algorithms (NSGA-III, MOMVO, MOGOA) were used to optimize the proposed system. The results indicate that the proposed system achieves an average energy efficiency of 31.64 % and exergy efficiency of 14.35 % annually. The average levelized cost and environmental impact of electricity are calculated to be 0.19 $/kWh and 1.24 mPts/kWh, respectively. Additionally, the payback period for the system is estimated at 3.22 years. The multi-objective optimization of the proposed system resulted in a 54.04 % improvement in cogeneration efficiency, a 38.82 % reduction in payback period, and a 6.39 % decrease in the environmental impact rate, compared to the baseline performance of the system before optimization.en_US
dc.languageengen_US
dc.relation.ispartofInternational Journal Of Renewable Energy Development (IJRED)en_US
dc.sourceRenewable Energy [ISSN 0960-1481],v. 256, (January 2026)en_US
dc.subject3308 Ingeniería y tecnología del medio ambienteen_US
dc.subject.otherMulti-Objective Optimizationen_US
dc.subject.otherSolar And Biomassen_US
dc.subject.otherCogenerationen_US
dc.subject.otherLife Cycle Assessmenten_US
dc.subject.otherCanary Islandsen_US
dc.titleMulti-objective optimization, techno-economic analysis, and life cycle assessment of an innovative solar-biomass-driven cogeneration system integrated with MED-RO-MD: A case study of the Canary Islandsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.renene.2025.123757en_US
dc.identifier.isi001529851100002-
dc.identifier.eissn1879-0682-
dc.relation.volume256en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid27373177-
dc.contributor.daisngid3576708-
dc.contributor.daisngid1491484-
dc.contributor.daisngid79004691-
dc.description.numberofpages30en_US
dc.utils.revisionNoen_US
dc.contributor.wosstandardWOS:Rabeti, SAM-
dc.contributor.wosstandardWOS:Manesh, MHK-
dc.contributor.wosstandardWOS:Blanco-Marigorta, AM-
dc.contributor.wosstandardWOS:Del Río-Gamero, B-
dc.date.coverdateJunio 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,485
dc.description.sjrqQ2
dc.description.esciESCI
dc.description.erihplusERIH PLUS
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.orcid0000-0003-4635-7235-
crisitem.author.orcid0000-0001-5556-010X-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameBlanco Marigorta, Ana María-
crisitem.author.fullNameDel Río Gamero, Beatriz-
Colección:Artículos
Adobe PDF (20,22 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.