Please use this identifier to cite or link to this item:
https://accedacris.ulpgc.es/handle/10553/143230
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Leiva ,Luis A. | en_US |
dc.contributor.author | Diaz, Moises | en_US |
dc.contributor.author | Attygalle, Nuwan T. | en_US |
dc.contributor.author | Ferrer, Miguel A. | en_US |
dc.contributor.author | Plamondon ,Réjean | en_US |
dc.date.accessioned | 2025-07-22T10:31:15Z | - |
dc.date.available | 2025-07-22T10:31:15Z | - |
dc.date.issued | 2025 | en_US |
dc.identifier.issn | 2168-2216 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | https://accedacris.ulpgc.es/handle/10553/143230 | - |
dc.description.abstract | Handwriting movements can be leveraged as a unique form of behavioral biometrics, to verify whether a real user is operating a device or application. This task can be framed as a "reverse Turing test" in which a computer has to detect if an input instance has been generated by a human or artificially. To tackle this task, we study ten public datasets of handwritten symbols (isolated characters, digits, gestures, pointing traces, and signatures) that are artificially reproduced using seven different synthesizers, including, among others, the Kinematic Theory (Sigma Lambda model), generative adversarial networks, Transformers, and Diffusion models. We train a shallow recurrent neural network that achieves excellent performance (98.3% Area Under the ROC Curve (AUC) score and 1.4% equal error rate on average across all synthesizers and datasets) using nonfeaturized trajectory data as input. In few-shot settings, we show that our classifier achieves such an excellent performance when trained on just 10% of the data, as evaluated on the remaining 90% of the data as a test set. We further challenge our classifier in out-of-domain settings, and observe very competitive results as well. Our work has implications for computerized systems that need to verify human presence, and adds an additional layer of security to keep attackers at bay. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | IEEE Transactions on Systems, Man, and Cybernetics: Systems | en_US |
dc.source | IEEE Transactions On Systems Man Cybernetics-Systems[ISSN 2168-2216], (2025) | en_US |
dc.subject | 33 Ciencias tecnológicas | en_US |
dc.subject.other | Signature | en_US |
dc.subject.other | Online | en_US |
dc.subject.other | Write | en_US |
dc.subject.other | Biometrics | en_US |
dc.subject.other | Classification | en_US |
dc.subject.other | Classification | en_US |
dc.subject.other | Deep Learning | en_US |
dc.subject.other | Deep Learning | en_US |
dc.subject.other | Reverse Turing Test | en_US |
dc.subject.other | Reverse Turing Test | en_US |
dc.subject.other | Verification | en_US |
dc.subject.other | Verification | en_US |
dc.title | Telling Human and Machine Handwriting Apart | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/TSMC.2025.3579921 | en_US |
dc.identifier.isi | 001527323800001 | - |
dc.identifier.eissn | 2168-2232 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.description.numberofpages | 12 | en_US |
dc.utils.revision | No | en_US |
dc.contributor.wosstandard | WOS:Leiva, LA | - |
dc.contributor.wosstandard | WOS:Diaz, M | - |
dc.contributor.wosstandard | WOS:Attygalle, NT | - |
dc.contributor.wosstandard | WOS:Ferrer, MA | - |
dc.contributor.wosstandard | WOS:Plamondon, R | - |
dc.date.coverdate | 2025 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 3,992 | |
dc.description.jcr | 8,6 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 10,4 | |
item.fulltext | Con texto completo | - |
item.grantfulltext | open | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Física | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0003-3878-3867 | - |
crisitem.author.orcid | 0000-0002-2924-1225 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Leiva ,Luis A. | - |
crisitem.author.fullName | Díaz Cabrera, Moisés | - |
crisitem.author.fullName | Ferrer Ballester, Miguel Ángel | - |
crisitem.author.fullName | Plamondon ,Réjean | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.