Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/143230
DC FieldValueLanguage
dc.contributor.authorLeiva ,Luis A.en_US
dc.contributor.authorDiaz, Moisesen_US
dc.contributor.authorAttygalle, Nuwan T.en_US
dc.contributor.authorFerrer, Miguel A.en_US
dc.contributor.authorPlamondon ,Réjeanen_US
dc.date.accessioned2025-07-22T10:31:15Z-
dc.date.available2025-07-22T10:31:15Z-
dc.date.issued2025en_US
dc.identifier.issn2168-2216en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/143230-
dc.description.abstractHandwriting movements can be leveraged as a unique form of behavioral biometrics, to verify whether a real user is operating a device or application. This task can be framed as a "reverse Turing test" in which a computer has to detect if an input instance has been generated by a human or artificially. To tackle this task, we study ten public datasets of handwritten symbols (isolated characters, digits, gestures, pointing traces, and signatures) that are artificially reproduced using seven different synthesizers, including, among others, the Kinematic Theory (Sigma Lambda model), generative adversarial networks, Transformers, and Diffusion models. We train a shallow recurrent neural network that achieves excellent performance (98.3% Area Under the ROC Curve (AUC) score and 1.4% equal error rate on average across all synthesizers and datasets) using nonfeaturized trajectory data as input. In few-shot settings, we show that our classifier achieves such an excellent performance when trained on just 10% of the data, as evaluated on the remaining 90% of the data as a test set. We further challenge our classifier in out-of-domain settings, and observe very competitive results as well. Our work has implications for computerized systems that need to verify human presence, and adds an additional layer of security to keep attackers at bay.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Systems, Man, and Cybernetics: Systemsen_US
dc.sourceIEEE Transactions On Systems Man Cybernetics-Systems[ISSN 2168-2216], (2025)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherSignatureen_US
dc.subject.otherOnlineen_US
dc.subject.otherWriteen_US
dc.subject.otherBiometricsen_US
dc.subject.otherClassificationen_US
dc.subject.otherClassificationen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherReverse Turing Testen_US
dc.subject.otherReverse Turing Testen_US
dc.subject.otherVerificationen_US
dc.subject.otherVerificationen_US
dc.titleTelling Human and Machine Handwriting Aparten_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TSMC.2025.3579921en_US
dc.identifier.isi001527323800001-
dc.identifier.eissn2168-2232-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages12en_US
dc.utils.revisionNoen_US
dc.contributor.wosstandardWOS:Leiva, LA-
dc.contributor.wosstandardWOS:Diaz, M-
dc.contributor.wosstandardWOS:Attygalle, NT-
dc.contributor.wosstandardWOS:Ferrer, MA-
dc.contributor.wosstandardWOS:Plamondon, R-
dc.date.coverdate2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr3,992
dc.description.jcr8,6
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,4
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameLeiva ,Luis A.-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.author.fullNamePlamondon ,Réjean-
Appears in Collections:Artículos
Adobe PDF (4,24 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.