Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/141105
Campo DC Valoridioma
dc.contributor.authorCarta González, José Antonioen_US
dc.contributor.authorMoreno, Dianaen_US
dc.contributor.authorCabrera Santana, Pedro Jesúsen_US
dc.date.accessioned2025-06-25T14:45:00Z-
dc.date.available2025-06-25T14:45:00Z-
dc.date.issued2025en_US
dc.identifier.issn2077-1312en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/141105-
dc.description.abstractReanalysis datasets, such as MERRA2, are frequently used in wind resource assessments. However, their wind speed data are typically limited to fixed altitudes that differ from wind turbine hub heights, which introduces significant uncertainty in energy yield estimations. To address this challenge, we propose a reproducible Measure–Correlate–Predict (MCP) framework that integrates Random Forest (RF) supervised learning to estimate hub-height wind speeds from MERRA2 data at 50 m. The method includes the fitting of 21 vertical wind profile models using data at 2 m, 10 m, and 50 m, with model selection based on the minimum mean square error. The approach was applied to seven wind-prone locations in the Canary Islands, selected for their strategic relevance in current or planned wind energy development. Results indicate that a three-parameter logarithmic wind profile achieved the best fit in 51.31% of cases, significantly outperforming traditional single-parameter models. The RF-based MCP predictions at different hub heights achieved RMSE metrics below 0.425 m/s across a 10-year period. These findings demonstrate the potential of combining physical modeling with machine learning to enhance wind speed extrapolation from reanalysis data and support informed wind energy planning in data-scarce regions.en_US
dc.languageengen_US
dc.relationRESMAC (1/MAC/2/2.2/0011)en_US
dc.relation.ispartofJournal of Marine Science and Engineeringen_US
dc.sourceJournal of Marine Science and Engineering [ISSN 2077-1312], v. 13 (7), p. 1-30 (Junio 2025)en_US
dc.subject3313 Tecnología e ingeniería mecánicasen_US
dc.subject.otherVertical wind profileen_US
dc.subject.otherReanalysisen_US
dc.subject.otherMERRA2 datasetsen_US
dc.subject.otherMeasure–correlate–predicten_US
dc.subject.otherRandom foresten_US
dc.subject.otherMachine learningen_US
dc.titleA Measure–Correlate–Predict Approach for Transferring Wind Speeds from MERRA2 Reanalysis to Wind Turbine Hub Heightsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/jmse13071213en_US
dc.description.lastpage30en_US
dc.identifier.issue7-
dc.description.firstpage1en_US
dc.relation.volume13en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages30en_US
dc.utils.revisionen_US
dc.date.coverdateJunio 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,532
dc.description.jcr2,7
dc.description.sjrqQ2
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,4
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0003-1379-0075-
crisitem.author.orcid0000-0001-9707-6375-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameCarta González, José Antonio-
crisitem.author.fullNameCabrera Santana, Pedro Jesús-
Colección:Artículos
Adobe PDF (9,28 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.