Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/139942
Campo DC Valoridioma
dc.contributor.authorBourachdi, Soukaina Elen_US
dc.contributor.authorAmri, Abdelhay Elen_US
dc.contributor.authorAyub, Ali Razaen_US
dc.contributor.authorMoussaoui, Fatimaen_US
dc.contributor.authorRakcho, Yassineen_US
dc.contributor.authorOuadrhiri, Faiçal Elen_US
dc.contributor.authorAdachi, Abderrazzaken_US
dc.contributor.authorBouzid, Taoufiqen_US
dc.contributor.authorHerrera-Melián, José Albertoen_US
dc.contributor.authorLahkimi, Amalen_US
dc.date.accessioned2025-06-11T12:59:38Z-
dc.date.available2025-06-11T12:59:38Z-
dc.date.issued2025en_US
dc.identifier.issn1876-1070en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/139942-
dc.description.abstractBackground: Methylene blue (MB), a toxic dye in industrial wastewater, requires efficient removal methods due to its environmental and health risks. This study uses activated carbon derived from avocado pits, modified with chitosan to form the CS@ACAP composite, to enhance adsorption. The research focuses on optimizing the synthesis, evaluating adsorption efficiency, and exploring the adsorption mechanisms through experimental and theoretical analyses. Methods: Activated carbon was synthesized and optimized using the Box-Behnken design, considering key parameters such as sulfuric acid concentration, activation time, and temperature. The material was then modified with chitosan to create the CS@ACAP composite. Both materials were characterized using FTIR, SEM, XRD, BET, pHpzc, and EDS analyses. Adsorption experiments were performed under varying conditions pH (2–10), contact time (10–180 min), adsorbent mass (0.02–0.14 g) to determine the maximum adsorption capacity (qmax). Isotherm and thermodynamic models, along with DFT simulations, were used to analyze the adsorption behavior and provide molecular-level insights into methylene blue interactions with the materials. Significant Findings: The CS@ACAP composite exhibited a higher adsorption capacity (81.0 mg/g) compared to activated carbon (40.2 mg/g). Activated carbon achieved optimal adsorption at pH 10, with 160 min and 0.12 g of adsorbent, while CS@ACAP required only 110 min and 0.08 g. Both materials followed the Langmuir model in isotherm studies. Thermodynamic analysis showed exothermic adsorption on activated carbon and endothermic adsorption on CS@ACAP. DFT simulations confirmed stronger MB interactions with CS@ACAP, underscoring its potential as an efficient adsorbent. These findings position CS@ACAP as a promising, eco-friendly material for wastewater treatment.en_US
dc.languageengen_US
dc.relation.ispartofJournal of the Taiwan Institute of Chemical Engineersen_US
dc.sourceJournal of the Taiwan Institute of Chemical Engineers [ISSN 1876-1070],v. 173, (Agosto 2025)en_US
dc.subject330802 Residuos industrialesen_US
dc.subject.otherAdsorptionen_US
dc.subject.otherAvocado Pitsen_US
dc.subject.otherChitosan@Activated Carbonen_US
dc.subject.otherDften_US
dc.subject.otherMethylene blueen_US
dc.titleSynthesis and characterization of avocado pit activated carbon-incorporated chitosan composite beads for harnessing methylene blue adsorption: DFT insights and box-behnken design optimizationen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jtice.2025.106142en_US
dc.identifier.scopus105003823794-
dc.identifier.isi001494061900001-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid58657837700-
dc.contributor.authorscopusid57831692100-
dc.contributor.authorscopusid57219935869-
dc.contributor.authorscopusid58658010900-
dc.contributor.authorscopusid57468884200-
dc.contributor.authorscopusid57930636400-
dc.contributor.authorscopusid57742515800-
dc.contributor.authorscopusid58572349200-
dc.contributor.authorscopusid55666370900-
dc.contributor.authorscopusid15839933000-
dc.identifier.eissn1876-1089-
dc.relation.volume173en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid59646860-
dc.contributor.daisngid37437961-
dc.contributor.daisngid4403480-
dc.contributor.daisngid55869796-
dc.contributor.daisngid13091477-
dc.contributor.daisngid75990138-
dc.contributor.daisngid32115496-
dc.contributor.daisngid58076217-
dc.contributor.daisngid875100-
dc.contributor.daisngid10454931-
dc.description.numberofpages31en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:El Bourachdi, S-
dc.contributor.wosstandardWOS:El Amri, A-
dc.contributor.wosstandardWOS:Ayub, AR-
dc.contributor.wosstandardWOS:Moussaoui, F-
dc.contributor.wosstandardWOS:Rakcho, Y-
dc.contributor.wosstandardWOS:El Ouadrhiri, F-
dc.contributor.wosstandardWOS:Adachi, A-
dc.contributor.wosstandardWOS:Bouzid, T-
dc.contributor.wosstandardWOS:Herrera-Melián, JA-
dc.contributor.wosstandardWOS:Lahkimi, A-
dc.date.coverdateAgosto 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr0,849
dc.description.jcr5,5
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUNAT: Fotocatálisis y espectroscopía para aplicaciones medioambientales.-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.deptDepartamento de Química-
crisitem.author.orcid0000-0002-2466-6531-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.fullNameHerrera Melián, José Alberto-
Colección:Artículos
Adobe PDF (25,36 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.