Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/139751
Campo DC Valoridioma
dc.contributor.authorJari, Yassineen_US
dc.contributor.authorNajid, Nouraen_US
dc.contributor.authorNecibi, Mohamed Chakeren_US
dc.contributor.authorGourich, Bouchaiben_US
dc.contributor.authorVial, Christopheen_US
dc.contributor.authorElhalil, Alaaeddineen_US
dc.contributor.authorKaur, Parminderen_US
dc.contributor.authorMohdeb, Idrissen_US
dc.contributor.authorPark, Yurien_US
dc.contributor.authorHwang, Yuhoonen_US
dc.contributor.authorRuiz García, Alejandroen_US
dc.contributor.authorRoche, Nicolasen_US
dc.contributor.authorEl Midaoui, Azzeddineen_US
dc.date.accessioned2025-06-09T12:23:46Z-
dc.date.available2025-06-09T12:23:46Z-
dc.date.issued2025en_US
dc.identifier.issn0301-4797en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/139751-
dc.description.abstractThe increasing presence of emerging pollutants (EPs) in water poses significant environmental and health risks, necessitating effective treatment solutions. Originating from industrial, agricultural, and domestic sources, these contaminants threaten ecological and public health, underscoring the urgent need for innovative and efficient treatment methods. TiO2-based semiconductor photocatalysts have emerged as a promising approach for the degradation of EPs, leveraging their unique band structures and heterojunction schemes. However, few studies have examined the synergistic effects of operating conditions on these contaminants, representing a key knowledge gap in the field. This review addresses this gap by exploring recent trends in TiO2-driven heterogeneous photocatalysis for water and wastewater treatment, with an emphasis on photoreactor setups and configurations. Challenges in scaling up these photoreactors are also discussed. Furthermore, Machine Learning (ML) models play a crucial role in developing predictive frameworks for complex processes, highlighting intricate temporal dynamics essential for understanding EPs behavior. This capability integrates seamlessly with Computational Fluid Dynamics (CFD) modeling, which is also addressed in this review. Together, these approaches illustrate how CFD can simulate the degradation of EPs by effectively coupling chemical kinetics, radiative transfer, and hydrodynamics in both suspended and immobilized photocatalysts. By elucidating the synergy between ML and CFD models, this study offers new insights into overcoming traditional limitations in photocatalytic process design and optimizing operating conditions. Finally, this review presents recommendations for future directions and insights on optimizing and modeling photocatalytic processes.en_US
dc.languageengen_US
dc.relation.ispartofJournal of Environmental Managementen_US
dc.sourceJournal Of Environmental Management[ISSN 0301-4797],v. 373, (Enero 2025)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherPersonal Care Productsen_US
dc.subject.otherMethylene-Blue Dyeen_US
dc.subject.otherTitanium-Dioxideen_US
dc.subject.otherNeural-Networksen_US
dc.subject.otherReactor Designen_US
dc.subject.otherOxalic-Aciden_US
dc.subject.otherDegradationen_US
dc.subject.otherTio2en_US
dc.subject.otherNanoparticleen_US
dc.subject.otherContaminantsen_US
dc.subject.otherEmerging Pollutantsen_US
dc.subject.otherTio 2-Based Photocatalysisen_US
dc.subject.otherDegradationen_US
dc.subject.otherPhotocatalytic Reactor Designsen_US
dc.subject.otherMachine Learningen_US
dc.subject.otherCfd Modelingen_US
dc.titleA comprehensive review on TiO<sub>2</sub>-based heterogeneous photocatalytic technologies for emerging pollutants removal from water and wastewater: From engineering aspects to modeling approachesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jenvman.2024.123703en_US
dc.identifier.isi001392470400001-
dc.identifier.eissn1095-8630-
dc.relation.volume373en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid22720219-
dc.contributor.daisngid26371296-
dc.contributor.daisngid303824-
dc.contributor.daisngid22045608-
dc.contributor.daisngid17090399-
dc.contributor.daisngid52827313-
dc.contributor.daisngid72171057-
dc.contributor.daisngid67539998-
dc.contributor.daisngid34360495-
dc.contributor.daisngid5785-
dc.contributor.daisngid49751488-
dc.contributor.daisngid2291502-
dc.contributor.daisngid21457222-
dc.description.numberofpages26en_US
dc.utils.revisionNoen_US
dc.contributor.wosstandardWOS:Jari, Y-
dc.contributor.wosstandardWOS:Najid, N-
dc.contributor.wosstandardWOS:Necibi, MC-
dc.contributor.wosstandardWOS:Gourich, B-
dc.contributor.wosstandardWOS:Vial, C-
dc.contributor.wosstandardWOS:Elhalil, A-
dc.contributor.wosstandardWOS:Kaur, P-
dc.contributor.wosstandardWOS:Mohdeb, I-
dc.contributor.wosstandardWOS:Park, Y-
dc.contributor.wosstandardWOS:Hwang, Y-
dc.contributor.wosstandardWOS:Garcia, AR-
dc.contributor.wosstandardWOS:Roche, N-
dc.contributor.wosstandardWOS:El Midaoui, A-
dc.date.coverdateEnero 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,771
dc.description.jcr8,0
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR Energía, Corrosión, Residuos y Agua-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-5209-653X-
crisitem.author.parentorgDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.fullNameRuiz García, Alejandro-
Colección:Artículos
Adobe PDF (9,11 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.