Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/139730
DC FieldValueLanguage
dc.contributor.authorIsmail, Shahiden_US
dc.contributor.authorDiaz, Moisesen_US
dc.contributor.authorFerrer, Miguel A.en_US
dc.date.accessioned2025-06-09T10:52:10Z-
dc.date.available2025-06-09T10:52:10Z-
dc.date.issued2025en_US
dc.identifier.issn0952-1976en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/139730-
dc.description.abstractLameness detection using raw sensor data is a very challenging task, as the data are devoid of specific information regarding predictors such as gait distribution, weight among legs, etc. We have addressed this challenge using a deep learning technique, named LLP-Cow (Lameness level predictor for Cow), which is an application of artificial intelligence (AI). For objective comparison, LLP-Cow is validated using CowScreeningDB, an unbalanced public dataset composed of sensor data. This dataset is recorded during the normal life of dairy cows. Hence, LLP-Cow models the normal behaviour of cows and consists of feature extraction, application-specific deep network and a voting system. The technique presented is able to model the behaviour of a cow for both binary and multiclass classification. The precision and specificity reported by our technique stand at 0.94 and 0.98 for multiclass and 0.91 and 0.90 for binary protocols for the best case scenario. Moreover, F1 measure, Matthews correlation coefficient and Kappa are 0.94, 0.91, and 0.91, respectively. The technique introduced provides a margin for human intervention through the use of a voting system at the classification stage. The technique presented is therefore an implemented AI system for cow lameness detection that offers room for exploration in terms of real time implementation.en_US
dc.languageengen_US
dc.relation.ispartofEngineering Applications of Artificial Intelligenceen_US
dc.sourceEngineering Applications of Artificial Intelligence[ISSN 0952-1976],v. 151, (Julio 2025)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherArtificial Intelligence Lameness Detectionen_US
dc.subject.otherDeep Learning Applicationen_US
dc.subject.otherVoting System Application Of Artificial Intelligenceen_US
dc.titleDeep learning for lameness level detection in dairy cowsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.engappai.2025.110611en_US
dc.identifier.scopus105001475613-
dc.identifier.isi001461198100001-
dc.contributor.orcid0000-0003-4759-8444-
dc.contributor.orcid0000-0003-3878-3867-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57201735463-
dc.contributor.authorscopusid36760594500-
dc.contributor.authorscopusid55636321172-
dc.identifier.eissn1873-6769-
dc.relation.volume151en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid59393086-
dc.contributor.daisngid1137937-
dc.contributor.daisngid541484-
dc.description.numberofpages13en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Ismail, S-
dc.contributor.wosstandardWOS:Diaz, M-
dc.contributor.wosstandardWOS:Ferrer, MA-
dc.date.coverdateJulio 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,749
dc.description.jcr7,5
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Appears in Collections:Artículos
Adobe PDF (3,31 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.