Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/139382
Title: Advanced AI Strategies for Coastal Analysis: A Case Study at Las Canteras Beach in Gran Canaria
Authors: Sanfiel Reyes, Fernando 
Suárez Ramírez, Jonay 
Alemán-Flores, Miguel 
Monzón, Nelson 
UNESCO Clasification: 251010 Procesos litorales o sublitorales
120304 Inteligencia artificial
Keywords: Coastal Dynamic
Deep Learning
Semantic Segmentation
Issue Date: 2025
Publisher: Universitat Politècnica de Catalunya 
Project: Detección precisa mediante Inteligencia Artificial deeventos de interés en escenas de playa, costa y litoral. 
Journal: Instrumentation viewpoint 
Conference: MARTECH 25 : 12th International Workshop on Marine Technology
Abstract: We propose a semantic segmentation model to analyze coastal dynamics. Using advanced AI techniques, precise segmentation masks are generated, overcoming challenges like changing weather conditions, glare, or shadows. A diverse dataset ensures adaptability, classifying features such as waves, sand, foam, and static infrastructures at the pixel level. This enables detailed analysis of interactions between marine elements and coastal structures, and can lead to measurements such as wave period, crucial for predicting overtopping events and identifying abnormal sea behavior. Experiments at Las Canteras Beach in Gran Canaria, a location where our model was not trained, yet it still performed well, demonstrate its effectiveness. This research illustrates AI's potential in advancing coastal management and environmental monitoring.
URI: https://accedacris.ulpgc.es/handle/10553/139382
ISBN: 978-84-09-61714-2
ISSN: 1886-4864
Source: Martech 2025. Marine Technology Workshop, p. 19-20. 28th - 29th May. Pasaia (Gipuzkoa), Spain
Appears in Collections:Actas de congresos
Adobe PDF (1,18 MB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.