Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/139159
Campo DC Valoridioma
dc.contributor.authorDíaz Guzmán,Sara Esteren_US
dc.contributor.authorRomero Artiles, Francisco Ramónen_US
dc.contributor.authorSuárez, Luis Adargomaen_US
dc.contributor.authorTcharkhtchi ,Abbasen_US
dc.contributor.authorOrtega Medina, Zaida Cristinaen_US
dc.date.accessioned2025-05-29T07:16:45Z-
dc.date.available2025-05-29T07:16:45Z-
dc.date.issued2025en_US
dc.identifier.issn1026-1265en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/139159-
dc.description.abstractStabilizers play a crucial role in enhancing the durability of polymers, and recent interest in sustainable materials has accelerated the exploration of natural antioxidants as alternatives to traditional synthetic stabilizers. While antioxidants isolated from natural sources have already been integrated into polymers, the direct introduction of antioxidant-rich biomasses, like microalgae, offers a promising yet less explored approach. This study evaluates the effectiveness of microalgae biomass as a polyethylene (PE) stabilizer, using spirulina (washed and unwashed) and Tetraselmis striata. Antioxidant content was assessed through various extraction agents, revealing that water extracts of spirulina contained the highest polyphenol content (940.35 mg/100 g) and antioxidant activity. These biomasses were then integrated into a PE matrix at different loadings (0–30%) and processed by compression molding, while Tetraselmis was also processed by rotomolding. Washed spirulina significantly enhanced thermo-oxidative stability in PE, with a 30% loading yielding a 197% increase in oxidation induction time (OIT). Tetraselmis also proved to be effective, extending OIT from 0.6 to 44.7 min in compression-molded PE at the highest load. However, Tetraselmis did not yield similar results in rotomolding, where no notable OIT improvement was observed. Comparatively, unwashed spirulina provided moderate stability enhancements, though less effective than the washed biomass. This study suggests that microalgae, particularly washed spirulina, are viable eco-friendly stabilizers for PE, opening pathways for more sustainable polymer development.en_US
dc.languageengen_US
dc.relation.ispartofIranian Polymer Journal (English Edition)en_US
dc.sourceIranian Polymer Journal [1026-1265], (Mayo 2025), p. 1-11en_US
dc.subject330303 Procesos químicosen_US
dc.subject330313 Tecnología de la conservaciónen_US
dc.subject3303 ingeniería y tecnología químicasen_US
dc.subject.otherCompression moldingen_US
dc.subject.otherRotomoldingen_US
dc.subject.otherNatural antioxidanten_US
dc.subject.otherPolyphenolsen_US
dc.subject.otherStabilizationen_US
dc.subject.otherMicroalgaeen_US
dc.subject.otherBiocompositeen_US
dc.titleA preliminary study on the use of microalgae biomass as a polyolefin stabilizeren_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s13726-025-01504-zen_US
dc.identifier.scopus105006902389-
dc.identifier.isi001497706900001-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-7112-1067-
dc.contributor.authorscopusid57201121627-
dc.contributor.authorscopusid57225138822-
dc.contributor.authorscopusid7102054991-
dc.contributor.authorscopusid57203840574-
dc.contributor.authorscopusid36241994700-
dc.identifier.eissn1735-5265-
dc.description.lastpage11en_US
dc.description.firstpage1en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages11en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Díaz, S-
dc.contributor.wosstandardWOS:Romero, F-
dc.contributor.wosstandardWOS:Suárez, L-
dc.contributor.wosstandardWOS:Tcharkhtchi, A-
dc.contributor.wosstandardWOS:Ortega, Z-
dc.date.coverdateMayo 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,467-
dc.description.jcr2,4-
dc.description.sjrqQ2-
dc.description.jcrqQ3-
dc.description.scieSCIE-
dc.description.miaricds11,0-
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.orcid0000-0002-2220-1917-
crisitem.author.orcid0000-0003-1437-3046-
crisitem.author.orcid0000-0002-6709-1555-
crisitem.author.orcid0000-0002-7112-1067-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameDíaz Guzmán, Sara Ester-
crisitem.author.fullNameRomero Artiles, Francisco Ramón-
crisitem.author.fullNameSuárez García, Luis Adargoma-
crisitem.author.fullNameTcharkhtchi ,Abbas-
crisitem.author.fullNameOrtega Medina, Zaida Cristina-
Colección:Artículos
Adobe PDF (1,18 MB)
Vista resumida

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 12-ene-2026

Visitas

5
actualizado el 10-ene-2026

Descargas

1
actualizado el 10-ene-2026

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.