Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/handle/10553/137817
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Rodríguez-Moreno, Itsaso | en_US |
dc.contributor.author | Freire Obregón, David Sebastián | en_US |
dc.contributor.author | Martínez-Otzeta, José María | en_US |
dc.contributor.author | Castrillón Santana, Modesto Fernando | en_US |
dc.date.accessioned | 2025-05-07T13:52:03Z | - |
dc.date.available | 2025-05-07T13:52:03Z | - |
dc.date.issued | 2025 | en_US |
dc.identifier.issn | 1798-2340 | en_US |
dc.identifier.uri | https://accedacris.ulpgc.es/handle/10553/137817 | - |
dc.description.abstract | Gesture recognition is crucial in computer vision, with applications in security, consumer electronics, and beyond. While deep learning techniques like Convolutional Neural Networks or pre-processing methods such as optical flow achieve high classification accuracy, they often rely on large pre-trained networks or computationally intensive preprocessing, making them unsuitable for real-time or resource-limited applications. This paper introduces a novel lightweight classifier that leverages skeleton features and hand-shape similarity to representative gestures for efficient gesture recognition. By focusing on keypoints that reflect the human body’s structure and similarity to static gesture medoids, our approach reduces computational complexity while maintaining competitive performance, as demonstrated in tests on the public Jester database. This work offers an efficient solution suitable for gesture recognition applications requiring real-time processing with limited computational resources. | en_US |
dc.language | spa | en_US |
dc.relation.ispartof | Journal of Advances in Information Technology | en_US |
dc.source | Journal of Advances in Information Technology [eISSN 1798-2340], v. 16, n. 4, p. 447-457, (Abril 2025) | en_US |
dc.subject | 3304 Tecnología de los ordenadores | en_US |
dc.subject | 330417 Sistemas en tiempo real | en_US |
dc.subject.other | Gesture recognition | en_US |
dc.subject.other | Lightweight | en_US |
dc.subject.other | Hand keypoints | en_US |
dc.subject.other | Recurrent Neural Network (RNN) | en_US |
dc.title | Real-Time Hand Gesture Recognition: Lightweight Keypoint-Based Approach with Medoid Similarity | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.12720/jait.16.4.447-457 | en_US |
dc.description.lastpage | 457 | en_US |
dc.identifier.issue | 4 | - |
dc.description.firstpage | 447 | en_US |
dc.relation.volume | 16 | en_US |
dc.investigacion | Ciencias | en_US |
dc.type2 | Artículo | en_US |
dc.description.numberofpages | 11 | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Marzo 2025 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2378-4277 | - |
crisitem.author.orcid | 0000-0002-8673-2725 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Freire Obregón, David Sebastián | - |
crisitem.author.fullName | Castrillón Santana, Modesto Fernando | - |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.