Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/137817
Campo DC Valoridioma
dc.contributor.authorRodríguez-Moreno, Itsasoen_US
dc.contributor.authorFreire Obregón, David Sebastiánen_US
dc.contributor.authorMartínez-Otzeta, José Maríaen_US
dc.contributor.authorCastrillón Santana, Modesto Fernandoen_US
dc.date.accessioned2025-05-07T13:52:03Z-
dc.date.available2025-05-07T13:52:03Z-
dc.date.issued2025en_US
dc.identifier.issn1798-2340en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/137817-
dc.description.abstractGesture recognition is crucial in computer vision, with applications in security, consumer electronics, and beyond. While deep learning techniques like Convolutional Neural Networks or pre-processing methods such as optical flow achieve high classification accuracy, they often rely on large pre-trained networks or computationally intensive preprocessing, making them unsuitable for real-time or resource-limited applications. This paper introduces a novel lightweight classifier that leverages skeleton features and hand-shape similarity to representative gestures for efficient gesture recognition. By focusing on keypoints that reflect the human body’s structure and similarity to static gesture medoids, our approach reduces computational complexity while maintaining competitive performance, as demonstrated in tests on the public Jester database. This work offers an efficient solution suitable for gesture recognition applications requiring real-time processing with limited computational resources.en_US
dc.languagespaen_US
dc.relation.ispartofJournal of Advances in Information Technologyen_US
dc.sourceJournal of Advances in Information Technology [eISSN 1798-2340], v. 16, n. 4, p. 447-457, (Abril 2025)en_US
dc.subject3304 Tecnología de los ordenadoresen_US
dc.subject330417 Sistemas en tiempo realen_US
dc.subject.otherGesture recognitionen_US
dc.subject.otherLightweighten_US
dc.subject.otherHand keypointsen_US
dc.subject.otherRecurrent Neural Network (RNN)en_US
dc.titleReal-Time Hand Gesture Recognition: Lightweight Keypoint-Based Approach with Medoid Similarityen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.12720/jait.16.4.447-457en_US
dc.description.lastpage457en_US
dc.identifier.issue4-
dc.description.firstpage447en_US
dc.relation.volume16en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.description.numberofpages11en_US
dc.utils.revisionen_US
dc.date.coverdateMarzo 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2378-4277-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameFreire Obregón, David Sebastián-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.