Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/136428
Campo DC Valoridioma
dc.contributor.authorMonzón Verona, José Miguel-
dc.contributor.authorGarcia-Alonso Montoya, Santiago-
dc.contributor.authorSantana Martin, Francisco Jorge-
dc.date.accessioned2025-02-24T15:56:20Z-
dc.date.available2025-02-24T15:56:20Z-
dc.date.issued2025-
dc.identifier.issn1424-8220-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/136428-
dc.description.abstractIn this paper, electrical discharge images are classified using AI with quantum machine learning techniques. These discharges were originated in dielectric mineral oils and were detected by a high-resolution optical sensor. The captured images were processed in a Scikit-image environment to obtain a reduced number of features or qubits for later training of quantum circuits. Two quantum binary classification models were developed and compared in the Qiskit environment for four discharge binary combinations. The first was a quantum variational model (QVM), and the second was a conventional support vector machine (SVM) with a quantum kernel model (QKM). The execution of these two models was realized on three fault-tolerant physical quantum IBM computers. The novelty of this article lies in its application to a real problem, unlike other studies that focus on simulated or theoretical data sets. In addition, a study is carried out on the impact of the number of qubits in QKM, and it is shown that increasing the number of qubits in this model significantly improves the accuracy in the classification of the four binary combinations studied. In the QVM, with two qubits, an accuracy of 92% was observed in the first discharge combination in the three quantum computers used, with a margin of error of 1% compared to the simulation obtained on classical computers.-
dc.languageeng-
dc.relation.ispartofSensors (Switzerland)-
dc.sourceSensors (Switzerland) [1424-8220], v.25, p. 1-26-
dc.subject3306 Ingeniería y tecnología eléctricas-
dc.subject.otherPartial discharges-
dc.subject.otherMineral oils-
dc.subject.otherQuantum machine learning-
dc.subject.otherQuantum variatonal model-
dc.subject.otherQuantum kernel model-
dc.subject.otherImage processing with AI-
dc.titleQuantum variational vs. quantum kernel machine learning models for partial discharge classification in dielectric oils-
dc.typeinfo:eu-repo/semantics/article-
dc.typeArticle-
dc.identifier.doi10.3390/s25041277-
dc.identifier.isi001431751600001-
dc.identifier.eissn1424-8220-
dc.description.lastpage26-
dc.identifier.issue4-
dc.description.firstpage1-
dc.relation.volume25-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages26-
dc.utils.revision-
dc.contributor.wosstandardWOS:Monzón-Verona, J-
dc.contributor.wosstandardWOS:García-Alonso, S-
dc.contributor.wosstandardWOS:Santana-Martín, F-
dc.date.coverdateFebrero 2025-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
dc.description.sjr0,786-
dc.description.jcr3,4-
dc.description.sjrqQ1-
dc.description.jcrqQ2-
dc.description.scieSCIE-
dc.description.miaricds10,8-
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUMA: Instrumentación avanzada-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Eléctrica-
crisitem.author.deptGIR IUMA: Instrumentación avanzada-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0001-9694-269X-
crisitem.author.orcid0000-0003-4389-0632-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameMonzón Verona, José Miguel-
crisitem.author.fullNameGarcia-Alonso Montoya, Santiago-
crisitem.author.fullNameSantana Martin, Francisco Jorge-
Colección:Artículos
Adobe PDF (8,02 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.