Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/136266
Campo DC Valoridioma
dc.contributor.authorHernández Pérez, Marianaen_US
dc.contributor.authorHernández Castellano, Pedro Manuelen_US
dc.contributor.authorVázquez Martínez, Juan M.en_US
dc.contributor.authorMarrero Alemán, María Doloresen_US
dc.date.accessioned2025-02-17T14:49:49Z-
dc.date.available2025-02-17T14:49:49Z-
dc.date.issued2025en_US
dc.identifier.issn2405-8440en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/136266-
dc.description.abstractIn the domain of surface engineering, certain additive manufacturing technologies have established themselves as efficient and sustainable solutions. Mask stereolithography (MSLA) has gained prominence, especially when combined with the electroforming process for the production of microtextured copper electrodes. These electrodes are of particular interest in die sinking EDM (SEDM) applications, where high precision in geometry and microtextures is required, and alternative manufacturing technologies often struggle to meet these demands. This study presents the development of microtextured electrodes for sinking EDM processes (SEDM), fabricated by mask stereolithography (MSLA) and copper electroforming. The process starts with the design of textured 3D models using CAD software, followed by their fabrication with MSLA, using high-resolution photosensitive resins. Subsequently, the parts are metallized by sputtering to give them electrical conductivity and, finally, they are subjected to an electroforming process in an electrolytic bath to generate the copper shells. Finally, a metrological characterization was carried out at each stage of the process, from CAD design to the final part obtained by EDM, evaluating textures in low and high relief. The results demonstrate high replicability in the transfer of microtextures to electroformed shells. However, some dimensional variations are observed, primarily due to the inherent limitations of the resolution of MSLA technology. For biomimetic textures, such as those inspired by shark skin, excellent lateral fidelity was observed, while low-relief geometric textures presented greater variations due to the accumulation of photosensitive resin in the first layers of the texturing. Post-processing, particularly thorough cleaning using advanced techniques such as ultrasonic cleaning, proved crucial in minimizing dimensional errors and improving final accuracy. These findings provide a solid foundation for the development of future research aimed at optimizing the accuracy of electrode texturing for EDM applications, addressing a critical need in the field of functional surface microfabrication.en_US
dc.languageengen_US
dc.relation.ispartofHeliyonen_US
dc.sourceHeliyon [ISSN 2405-8440], v. 11 (3), p. 1-11en_US
dc.subject331005 Ingeniería de procesosen_US
dc.subject3310 tecnología industrialen_US
dc.subject.otherElectroformingen_US
dc.subject.otherMask Stereolitography (Msla)en_US
dc.subject.otherMicrotexturingen_US
dc.subject.otherSedmen_US
dc.subject.otherSurface Microtopographyen_US
dc.titleElectroforming-based micro-texturing: Advancements for surface engineering in EDMen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.heliyon.2025.e42439en_US
dc.identifier.scopus85217019640-
dc.contributor.orcid0000-0003-2823-4063-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid58396792700-
dc.contributor.authorscopusid57562406000-
dc.contributor.authorscopusid55986819500-
dc.contributor.authorscopusid58765367200-
dc.identifier.eissn2405-8440-
dc.description.lastpage11en_US
dc.identifier.issue3-
dc.description.firstpage1en_US
dc.relation.volume11en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages11en_US
dc.utils.revisionen_US
dc.date.coverdateFebrero 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,617
dc.description.jcr3,4
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.esciESCI
dc.description.miaricds10,3
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0003-2823-4063-
crisitem.author.orcid0000-0001-8443-118X-
crisitem.author.orcid0000-0002-9396-1649-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameHernández Pérez, Mariana-
crisitem.author.fullNameHernández Castellano, Pedro Manuel-
crisitem.author.fullNameMarrero Alemán, María Dolores-
Colección:Artículos
Adobe PDF (5,49 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.