Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/136138
Campo DC Valoridioma
dc.contributor.authorLara-Abelenda, Francisco J.-
dc.contributor.authorChushig-Muzo, David-
dc.contributor.authorWägner, Anna Maria Claudia-
dc.contributor.authorTayefi, Maryam-
dc.contributor.authorSoguero-Ruiz, Cristina-
dc.date.accessioned2025-02-13T13:19:51Z-
dc.date.available2025-02-13T13:19:51Z-
dc.date.issued2025-
dc.identifier.issn0952-1976-
dc.identifier.otherScopus-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/136138-
dc.description.abstractType 1 diabetes (T1D) causes insulin deficiency and exogenous therapy is required for maintaining targeted glucose levels. Hypoglycemia is the most frequent side effect of insulin, being severe hypoglycemia (SH) one of the most critical hazards with a range of life-threatening consequences. Artificial intelligence (AI) and multimodal fusion have boosted predictive performance in different domains. This study aims to evaluate the effectiveness of early fusion (EF) and late fusion (LF) approaches for predicting SH, to create a methodology capable of achieving robust results in datasets with a low number of samples for predicting SH and to characterize the risk factors involved in the SH onset using explainable AI (XAI). Data from a case-control study comprising adults over 60 years with T1D and with diabetes duration of 20 years were used and three types of modalities were considered: (1) continuous glucose monitoring data (time series); (2) clinical codes (text); and (3) surveys related to fear, unawareness, depression, and cognitive tests (tabular data). The results revealed that EF outperformed models trained with single-modality data by 5.8%, with an area under the receiver operating characteristic curve of 0.779. XAI techniques helped to discover that features related to fear and unawareness are mainly associated with SH. Our study introduced an interpretable and multimodal methodology capable of predicting the occurrence of SH in adults with T1D in the next year. Our interpretable methodology contributes to predicting SH and identifying related key factors, thus preventing SH complications and improving patient's quality of life.-
dc.languageeng-
dc.relation.ispartofEngineering Applications of Artificial Intelligence-
dc.sourceEngineering Applications of Artificial Intelligence [ISSN 0952-1976], v. 144, (Marzo 2025)-
dc.subject32 Ciencias médicas-
dc.subject320502 Endocrinología-
dc.subject.otherExplainable Artificial Intelligence-
dc.subject.otherMultimodal Data Fusion-
dc.subject.otherRepresentation Learning-
dc.subject.otherSevere Hypoglycemia-
dc.subject.otherText Representation Methods-
dc.subject.otherType 1 Diabetes Mellitus-
dc.titleInterpretable and multimodal fusion methodology to predict severe hypoglycemia in adults with type 1 diabetes-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1016/j.engappai.2025.110142-
dc.identifier.scopus85216329553-
dc.identifier.isi001422227500001-
dc.contributor.orcid0000-0001-5565-8203-
dc.contributor.orcid0000-0001-5585-2305-
dc.contributor.orcid0000-0002-7663-9308-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0001-5817-989X-
dc.contributor.authorscopusid58896003400-
dc.contributor.authorscopusid57218569405-
dc.contributor.authorscopusid7401456520-
dc.contributor.authorscopusid57188813741-
dc.contributor.authorscopusid55207356700-
dc.identifier.eissn1873-6769-
dc.relation.volume144-
dc.investigacionCiencias de la Salud-
dc.type2Artículo-
dc.contributor.daisngid68816308-
dc.contributor.daisngid2050061-
dc.contributor.daisngid68656559-
dc.contributor.daisngid4408397-
dc.contributor.daisngid59667626-
dc.description.numberofpages22-
dc.utils.revision-
dc.contributor.wosstandardWOS:Lara-Abelenda, FJ-
dc.contributor.wosstandardWOS:Chushig-Muzo, D-
dc.contributor.wosstandardWOS:Wägner, AM-
dc.contributor.wosstandardWOS:Tayefi, M-
dc.contributor.wosstandardWOS:Soguero-Ruiz, C-
dc.date.coverdateMarzo 2025-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-MED-
dc.description.sjr1,749-
dc.description.jcr7,5-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds11,0-
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.orcid0000-0002-7663-9308-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameWägner, Anna Maria Claudia-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.