Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/136090
Campo DC Valoridioma
dc.contributor.authorSantana Falcon, Yerayen_US
dc.contributor.authorBrasseur, Pierreen_US
dc.contributor.authorMichel Brankart, Jeanen_US
dc.contributor.authorGarnier, Florenten_US
dc.date.accessioned2025-02-11T13:51:24Z-
dc.date.available2025-02-11T13:51:24Z-
dc.date.issued2020en_US
dc.identifier.issn1812-0784en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/136090-
dc.description.abstractSatellite-derived surface chlorophyll data are assimilated daily into a three-dimensional 24-member ensemble configuration of an online-coupled NEMO (Nucleus for European Modeling of the Ocean)-PISCES (Pelagic Interaction Scheme of Carbon and Ecosystem Studies) model for the North Atlantic Ocean. A 1-year multivariate assimilation experiment is performed to evaluate the impacts on analyses and forecast ensembles. Our results demonstrate that the integration of data improves surface analysis and forecast chlorophyll representation in a major part of the model domain, where the assimilated simulation outperforms the probabilistic skills of a non-assimilated analogous simulation. However, improvements are dependent on the reliability of the prior free ensemble. A regional diagnosis shows that surface chlorophyll is overestimated in the northern limit of the subtropical North Atlantic, where the prior ensemble spread does not cover the observation's variability. There, the system cannot deal with corrections that alter the equilibrium between the observed and unobserved state variables producing instabilities that propagate into the forecast. To alleviate these inconsistencies, a 1-month sensitivity experiment in which the assimilation process is only applied to model fluctuations is performed. Results suggest the use of this methodology may decrease the effect of corrections on the correlations between state vectors. Overall, the experiments presented here evidence the need of refining the description of model's uncertainties according to the biogeochemical characteristics of each oceanic region.en_US
dc.languageengen_US
dc.relationCMEMS grant no. 36-GLO-HR-ASSIMen_US
dc.relation.ispartofOcean Scienceen_US
dc.sourceOcean Science [ISSN 1812-0784], v. 16, n. 5, p. 1297–1315en_US
dc.subject2510 Oceanografíaen_US
dc.titleAssimilation of chlorophyll data into a stochastic ensemble simulation for the North Atlantic Oceanen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.5194/os-16-1297-2020en_US
dc.identifier.scopus2-s2.0-85095736369-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage1315en_US
dc.identifier.issue5-
dc.description.firstpage1297en_US
dc.relation.volume16en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.description.numberofpages19en_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr1,086
dc.description.jcr1,04
dc.description.sjrqQ1
dc.description.jcrqQ2
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptDepartamento de Biología-
crisitem.author.orcid0000-0002-2627-1947-
crisitem.author.fullNameSantana Falcon, Yeray-
Colección:Artículos
Adobe PDF (10,8 MB)
Vista resumida

Citas SCOPUSTM   

3
actualizado el 30-mar-2025

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 30-mar-2025

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.