Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/135759
Título: Ensemble methods for bankruptcy resolution prediction: a new approach
Autores/as: Sánchez Medina, Agustín Jesús 
Blázquez Santana, Félix 
Cerviño-Cortínez, Daniel L.
Pellejero Silva, Mónica Avelina 
Clasificación UNESCO: 530301 Contabilidad financiera
Palabras clave: Bankruptcy
Reorganization
Prediction
Artificial intelligence
Ensemble learning
Fecha de publicación: 2025
Publicación seriada: Computational Economics 
Resumen: When a company goes bankrupt, it generates an extremely important uncertainty for all stakeholders as to whether the company will be reorganized or liquidated. This study aims to provide a successful methodology to predict whether a bankrupt SME will reorganize or liquidate. This could prevent significant economic and social losses and would contribute to reduce the number of SMEs that are helped to reorganize when they have little chance of success or that are liquidated when they could be viable. This useful and valid methodology applies algorithms (e.g., k-nearest neighbors) and techniques of ensemble learning and performance evaluation algorithms for the first time, considering the reviewed literature. By applying this methodology, it is possible to achieve a performance far superior to that known in the literature, specifically with an average accuracy of 94 percent using a data set with only financial variables of 1683 Spanish SMEs in the period 2011–2019
URI: http://hdl.handle.net/10553/135759
ISSN: 0927-7099
DOI: 10.1007/s10614-024-10709-y
Fuente: Computional Economics (2025).
Colección:Artículos
Adobe PDF (1,71 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.