Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/135759
| Título: | Ensemble methods for bankruptcy resolution prediction: a new approach | Autores/as: | Sánchez Medina, Agustín Jesús Blázquez Santana, Félix Cerviño-Cortínez, Daniel L. Pellejero Silva, Mónica Avelina |
Clasificación UNESCO: | 530301 Contabilidad financiera | Palabras clave: | Bankruptcy Reorganization Prediction Artificial intelligence Ensemble learning |
Fecha de publicación: | 2025 | Publicación seriada: | Computational Economics | Resumen: | When a company goes bankrupt, it generates an extremely important uncertainty for all stakeholders as to whether the company will be reorganized or liquidated. This study aims to provide a successful methodology to predict whether a bankrupt SME will reorganize or liquidate. This could prevent significant economic and social losses and would contribute to reduce the number of SMEs that are helped to reorganize when they have little chance of success or that are liquidated when they could be viable. This useful and valid methodology applies algorithms (e.g., k-nearest neighbors) and techniques of ensemble learning and performance evaluation algorithms for the first time, considering the reviewed literature. By applying this methodology, it is possible to achieve a performance far superior to that known in the literature, specifically with an average accuracy of 94 percent using a data set with only financial variables of 1683 Spanish SMEs in the period 2011–2019 | URI: | https://accedacris.ulpgc.es/handle/10553/135759 | ISSN: | 0927-7099 | DOI: | 10.1007/s10614-024-10709-y | Fuente: | Computional Economics (2025). |
| Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 12-ene-2026
Visitas
233
actualizado el 15-ene-2026
Descargas
37
actualizado el 15-ene-2026
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.