Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/135721
Campo DC Valoridioma
dc.contributor.authorMontoya Benitez, Alber Oswaldoen_US
dc.contributor.authorSuárez Sarmiento, Álvaroen_US
dc.contributor.authorMacías López, Elsa Maríaen_US
dc.contributor.authorHerrera-Ramirez, Jorgeen_US
dc.date.accessioned2025-01-29T13:58:31Z-
dc.date.available2025-01-29T13:58:31Z-
dc.date.issued2025en_US
dc.identifier.issn2227-7080en_US
dc.identifier.urihttp://hdl.handle.net/10553/135721-
dc.description.abstractntelligent systems developed under the Internet of Things (IoT) paradigm offer solutions for various social and productive scenarios. Voice assistants (VAs), as part of IoT-based systems, facilitate task execution in a simple and automated manner, from entertainment to critical activities. Lithium batteries often power these devices. However, their energy consumption can be high due to the need to remain in continuous listening mode and the time it takes to search for and deliver responses from the Internet. This work proposes the implementation of a VA through Artificial Intelligence (AI) training and using cache memory to minimize response time and reduce energy consumption. First, the difference in energy consumption between VAs in active and passive states is experimentally verified. Subsequently, a communication architecture and a model representing the behavior of VAs are presented, from which a metric is developed to evaluate the energy consumption of these devices. The cache-enabled prototype shows a reduction in response time and energy expenditure (comparing the results of cloud-based VA and cache-based VA), several times lower according to the developed metric, demonstrating the effectiveness of the proposed system. This development could be a viable solution for areas with limited power sources, low coverage, and mobility situations that affect internet connectivity.en_US
dc.languageengen_US
dc.relation.ispartofTechnologies (Switzerland)en_US
dc.subject3325 Tecnología de las telecomunicacionesen_US
dc.subject.otherVoice assistanten_US
dc.subject.otherArtificial Intelligenceen_US
dc.subject.otherEnergy savingen_US
dc.subject.otherIntelligent systemsen_US
dc.titleOptimization of Energy Consumption in Voice Assistants Through AI-Enabled Cache Implementation: Development and Evaluation of a Metricen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/technologies13010019en_US
dc.identifier.issue1-
dc.investigacionIngeniería y Arquitecturaen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,855
dc.description.sjrqQ1
dc.description.esciESCI
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Arquitectura y Concurrencia-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.deptGIR IUCES: Arquitectura y Concurrencia-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.orcid0000-0002-3043-7161-
crisitem.author.orcid0000-0002-9085-8398-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSuárez Sarmiento, Álvaro-
crisitem.author.fullNameMacías López, Elsa María-
Colección:Artículos
Adobe PDF (2,48 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.