Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/135468
Campo DC Valoridioma
dc.contributor.authorRagusa, Domenico-
dc.contributor.authorRodriguez-Almeida, Antonio J.-
dc.contributor.authorGazzoni, Marco-
dc.contributor.authorTorti, Emanuele-
dc.contributor.authorMarenzi, Elisa-
dc.contributor.authorFabelo, Himar-
dc.contributor.authorCallicó, Gustavo M.-
dc.contributor.authorLeporati, Francesco-
dc.date.accessioned2025-01-20T13:02:42Z-
dc.date.available2025-01-20T13:02:42Z-
dc.date.issued2024-
dc.identifier.isbn9798350380385-
dc.identifier.issn2639-3859-
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/135468-
dc.description.abstractCardiovascular Diseases (CVDs) stand as the leading cause of mortality worldwide. Detecting subtle heart sounds alterations in the early stages of CVDs can be crucial for an initial effective treatment. Accordingly, the analysis of Phonocardiograms (PCGs) through segmentation could be helpful for CVDs screening. A well-established algorithm for this task is based on a Convolutional Neural Network (CNN) with an encoding-decoding topology. Prior to the CNN processing., a computationally intensive input pre-processing., based on envelopes extraction, is needed. Thus., achieving real-time performance can be challenging. The main goal of this study is the hardware design., implementation, and evaluation of four PCG pre-processing circuits to be employed together in the design of a low-power point-of-care device for real-time Artificial Intelligence (AI)-based PCG segmentation. Results have shown that the approximations introduced by the fixed-point format and this innovative architecture have a negligible impact on the AI segmentation quality. Finally, the pre-processing chain is real-time compliant., achieving a maximum latency of 257 ms for an available processing window of 1.28 s., while dissipating only 61 mW of power.-
dc.languageeng-
dc.relation.ispartof2024 27Th Euromicro Conference On Digital System Design, Dsd 2024-
dc.sourceProceedings - 2024 27th Euromicro Conference on Digital System Design, DSD 2024[EISSN ], p. 588-595, (Enero 2024)-
dc.subject3314 Tecnología médica-
dc.subject.otherArtificial Intelligence-
dc.subject.otherCardiovascular Diseases-
dc.subject.otherDigital Signal Processing-
dc.subject.otherFpga-
dc.subject.otherMedical Device-
dc.subject.otherPhonocardiogram-
dc.subject.otherPoint-Of-Care-
dc.subject.otherPre-Processing-
dc.titleFPGA Design of Digital Circuits for Phonocardiogram Pre-Processing Enabling Real-Time and Low-Power AI Processing-
dc.typeinfo:eu-repo/semantics/conferenceObject-
dc.typeConferenceObject-
dc.relation.conference27th Euromicro Conference on Digital System Design, DSD 2024-
dc.identifier.doi10.1109/DSD64264.2024.00084-
dc.identifier.scopus85211928805-
dc.identifier.isi001414927800075-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid58965602000-
dc.contributor.authorscopusid57838532200-
dc.contributor.authorscopusid6602549450-
dc.contributor.authorscopusid56091390500-
dc.contributor.authorscopusid55151473500-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid56006321500-
dc.contributor.authorscopusid55937698500-
dc.description.lastpage595-
dc.description.firstpage588-
dc.investigacionIngeniería y Arquitectura-
dc.type2Actas de congresos-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages8-
dc.utils.revision-
dc.contributor.wosstandardWOS:Ragusa, D-
dc.contributor.wosstandardWOS:Rodriguez-Almeida, AJ-
dc.contributor.wosstandardWOS:Gazzoni, M-
dc.contributor.wosstandardWOS:Torti, E-
dc.contributor.wosstandardWOS:Marenzi, E-
dc.contributor.wosstandardWOS:Fabelo, H-
dc.contributor.wosstandardWOS:Callico, GM-
dc.contributor.wosstandardWOS:Leporati, F-
dc.date.coverdateEnero 2024-
dc.identifier.conferenceidevents155559-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.event.eventsstartdate30-05-2024-
crisitem.event.eventsenddate31-05-2024-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.