Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/135462
Campo DC Valoridioma
dc.contributor.authorMarcello Ruiz, Francisco Javieren_US
dc.contributor.authorSpínola, Maríaen_US
dc.contributor.authorAlbors, Laiaen_US
dc.contributor.authorMarqués, Ferranen_US
dc.contributor.authorRodríguez Esparragón, Dionisioen_US
dc.contributor.authorEugenio González, Franciscoen_US
dc.date.accessioned2025-01-20T11:27:38Z-
dc.date.available2025-01-20T11:27:38Z-
dc.date.issued2024en_US
dc.identifier.issn2504-446Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/135462-
dc.description.abstractForests are crucial for biodiversity, climate regulation, and hydrological cycles, requiring sustainable management due to threats like deforestation and climate change. Traditional forest monitoring methods are labor-intensive and limited, whereas UAV LiDAR offers detailed three-dimensional data on forest structure and extensive coverage. This study primarily assesses individual tree segmentation algorithms in two forest ecosystems with different levels of complexity using high-density LiDAR data captured by the Zenmuse L1 sensor on a DJI Matrice 300RTK platform. The processing methodology for LiDAR data includes preliminary preprocessing steps to create Digital Elevation Models, Digital Surface Models, and Canopy Height Models. A comprehensive evaluation of the most effective techniques for classifying ground points in the LiDAR point cloud and deriving accurate models was performed, concluding that the Triangular Irregular Network method is a suitable choice. Subsequently, the segmentation step is applied to enable the analysis of forests at the individual tree level. Segmentation is crucial for monitoring forest health, estimating biomass, and understanding species composition and diversity. However, the selection of the most appropriate segmentation technique remains a hot research topic with a lack of consensus on the optimal approach and metrics to be employed. Therefore, after the review of the state of the art, a comparative assessment of four common segmentation algorithms (Dalponte2016, Silva2016, Watershed, and Li2012) was conducted. Results demonstrated that the Li2012 algorithm, applied to the normalized 3D point cloud, achieved the best performance with an F1-score of 91% and an IoU of 83%en_US
dc.languageengen_US
dc.relation“Análisis del cambio global en los Parques Nacionales Macaronésicos mediante teledetección multiplataforma y nuevas metodologías de procesado de datos”, Organismo Autónomo Parques Nacionales (Proyecto SPIP2022-02897)en_US
dc.relation.ispartofDronesen_US
dc.subject3325 Tecnología de las telecomunicacionesen_US
dc.subject.otherLiDARen_US
dc.subject.otherULSen_US
dc.subject.otherDEMen_US
dc.subject.otherCHMen_US
dc.subject.othertree segmentationen_US
dc.subject.otherforesten_US
dc.subject.otherwatersheden_US
dc.titlePerformance of Individual Tree Segmentation Algorithms in Forest Ecosystems Using UAV LiDAR Dataen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/drones8120772en_US
dc.identifier.issue12-
dc.investigacionIngeniería y Arquitecturaen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,76
dc.description.jcr4,4
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.miaricds10,1
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.orcid0000-0002-4542-2501-
crisitem.author.orcid0000-0002-0010-4024-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
crisitem.author.fullNameRodríguez Esparragón, Dionisio-
crisitem.author.fullNameEugenio González, Francisco-
Colección:Artículos
Adobe PDF (3,8 MB)
Vista resumida

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 30-mar-2025

Visitas

16
actualizado el 25-ene-2025

Descargas

8
actualizado el 25-ene-2025

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.