Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/135268
Campo DC Valoridioma
dc.contributor.authorJimeno-Sáez, Patriciaen_US
dc.contributor.authorSenent-Aparicio, Javieren_US
dc.contributor.authorCecilia, José M.en_US
dc.contributor.authorPérez Sánchez, Julioen_US
dc.date.accessioned2025-01-06T18:42:27Z-
dc.date.available2025-01-06T18:42:27Z-
dc.date.issued2020en_US
dc.identifier.issn1661-7827en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/135268-
dc.description.abstractThe Mar Menor is a hypersaline coastal lagoon with high environmental value and a characteristic example of a highly anthropized hydro-ecosystem located in the southeast of Spain. An unprecedented eutrophication crisis in 2016 and 2019 with abrupt changes in the quality of its waters caused a great social alarm. Understanding and modeling the level of a eutrophication indicator, such as chlorophyll-a (Chl-a), benefits the management of this complex system. In this study, we investigate the potential machine learning (ML) methods to predict the level of Chl-a. Particularly, Multilayer Neural Networks (MLNNs) and Support Vector Regressions (SVRs) are evaluated using as a target dataset information of up to nine different water quality parameters. The most relevant input combinations were extracted using wrapper feature selection methods which simplified the structure of the model, resulting in a more accurate and efficient procedure. Although the performance in the validation phase showed that SVR models obtained better results than MLNNs, experimental results indicated that both ML algorithms provide satisfactory results in the prediction of Chl-a concentration, reaching up to 0.7 R2CV (cross-validated coefficient of determination) for the best-fit models.en_US
dc.languageengen_US
dc.relation.ispartofInternational Journal of Environmental Research and Public Healthen_US
dc.sourceInternational Journal of Environmental Research and Public Health [ISSN 1661-7827], v. 17 (4), p. 1-14en_US
dc.subject330515 Ingeniería hidráulicaen_US
dc.subject.otherChlorophyll-a | Eutrophication | Mar Menor coastal lagoon | Multilayer neural network (MLNN) | Support vector regression (SVR) | Water qualityen_US
dc.titleUsing machine-learning algorithms for eutrophication modeling: Case study of mar menor lagoon (spain)en_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/ijerph17041189en_US
dc.identifier.pmid32069834-
dc.identifier.scopus2-s2.0-85079682247-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue4-
dc.relation.volume17en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages14en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,747
dc.description.jcr3,39
dc.description.sjrqQ2
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.ssciSSCI
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.orcid0000-0002-2615-6076-
crisitem.author.fullNamePérez Sánchez, Julio-
Colección:Artículos
Vista resumida
Adobe PDF (1,24 MB)

Citas SCOPUSTM   

51
actualizado el 30-mar-2025

Citas de WEB OF SCIENCETM
Citations

40
actualizado el 30-mar-2025

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.