Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/135253
Title: Global Surface Ocean Acidification Indicators From 1750 to 2100
Authors: Jiang, Li Qing
Dunne, John
Carter, Brendan R.
Tjiputra, Jerry F.
Terhaar, Jens
Sharp, Jonathan D.
Olsen, Are
Alin, Simone
Bakker, Dorothee C. E.
Feely, Richard A.
Gattuso, Jean Pierre
Hogan, Patrick
Ilyina, Tatiana
Lange, Nico
Lauvset, Siv K.
Lewis, Ernie R.
Lovato, Tomas
Palmieri, Julien
Santana Falcón, Yeray 
Schwinger, Jörg
Séférian, Roland
Strand, Gary
Swart, Neil
Tanhua, Toste
Tsujino, Hiroyuki
Wanninkhof, Rik
Watanabe, Michio
Yamamoto, Akitomo
Ziehn, Tilo
UNESCO Clasification: 251003 Oceanografía descriptiva
Keywords: Aragonite saturation state
Earth System Models
Global surface ocean
Ocean acidification indicators
PH, et al
Issue Date: 2023
Project: Tropical and South Atlantic - climate-based marine ecosystem prediction for sustainable management 
Journal: Journal of Advances in Modeling Earth Systems 
Abstract: Accurately predicting future ocean acidification (OA) conditions is crucial for advancing OA research at regional and global scales, and guiding society's mitigation and adaptation efforts. This study presents a new model-data fusion product covering 10 global surface OA indicators based on 14 Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6), along with three recent observational ocean carbon data products. The indicators include fugacity of carbon dioxide, pH on total scale, total hydrogen ion content, free hydrogen ion content, carbonate ion content, aragonite saturation state, calcite saturation state, Revelle Factor, total dissolved inorganic carbon content, and total alkalinity content. The evolution of these OA indicators is presented on a global surface ocean 1° × 1° grid as decadal averages every 10 years from preindustrial conditions (1750), through historical conditions (1850–2010), and to five future Shared Socioeconomic Pathways (2020–2100): SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. These OA trajectories represent an improvement over previous OA data products with respect to data quantity, spatial and temporal coverage, diversity of the underlying data and model simulations, and the provided SSPs. The generated data product offers a state-of-the-art research and management tool for the 21st century under the combined stressors of global climate change and ocean acidification. The gridded data product is available in NetCDF at the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information: https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0259391.html, and global maps of these indicators are available in jpeg at: https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/synthesis/surface-oa-indicators.html.
URI: http://hdl.handle.net/10553/135253
ISSN: 1942-2466
DOI: 10.1029/2022MS003563
Source: Journal of Advances in Modeling Earth Systems [ISSN 1942-2466], v. 15, n. 13, (Marzo 2023)
Appears in Collections:Artículos
Adobe PDF (8,48 MB)
Show full item record

SCOPUSTM   
Citations

29
checked on Jan 5, 2025

WEB OF SCIENCETM
Citations

26
checked on Jan 5, 2025

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.