Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/134967
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Souhaila Djaffal | en_US |
dc.contributor.author | Yasmina Benmabrouk | en_US |
dc.contributor.author | Chawki Djeddi | en_US |
dc.contributor.author | Díaz Cabrera, Moisés | en_US |
dc.contributor.author | Nadhir Nouioua | en_US |
dc.date.accessioned | 2024-12-11T10:00:12Z | - |
dc.date.available | 2024-12-11T10:00:12Z | - |
dc.date.issued | 2024 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/134967 | - |
dc.description.abstract | Machine Unlearning (MU) has emerged as a new paradigm for forgetting data samples from a given model. However, existing MU methods have focused on popular classification problems, leaving the landscape of unlearning for script identification and document analysis relatively unexplored. This paper addresses this gap by proposing an MU framework for script identification in scene text scenarios, utilizing deep learning networks. We conducted extensive experiments to assess the impact of data removal on different combinations of classes, including single and multiple classes, along with varying percentages of the forget set. We implemented two unlearning strategies: retraining from scratch (US) and fine-tuning (UF) for efficient forgetting manipulation. We evaluated our approach using a tiny vision transformer variant and ConvNeXt pre-trained models for scene text script identification on the SIW-13 dataset. Our results demonstrate that fine-tuning minimizes performance degradation. | en_US |
dc.language | eng | en_US |
dc.source | 26th Irish Machine Vision and Image Processing Conference (IMVIP 2024) | en_US |
dc.subject | 3399 Otras especialidades tecnológicas (especificar) | en_US |
dc.subject.other | Computer vision | en_US |
dc.subject.other | Image processing | en_US |
dc.title | When machine unlearning meets script identification | en_US |
dc.relation.conference | Irish Machine Vision and Image Processing Conference (26. Limerick. 2024) | en_US |
dc.identifier.doi | https://doi.org/10.1049/icp.2024.3330 | en_US |
dc.relation.volume | 2024 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Física | - |
crisitem.author.orcid | 0000-0003-3878-3867 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Díaz Cabrera, Moisés | - |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.