Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/134967
Campo DC Valoridioma
dc.contributor.authorSouhaila Djaffalen_US
dc.contributor.authorYasmina Benmabrouken_US
dc.contributor.authorChawki Djeddien_US
dc.contributor.authorDíaz Cabrera, Moisésen_US
dc.contributor.authorNadhir Nouiouaen_US
dc.date.accessioned2024-12-11T10:00:12Z-
dc.date.available2024-12-11T10:00:12Z-
dc.date.issued2024en_US
dc.identifier.urihttp://hdl.handle.net/10553/134967-
dc.description.abstractMachine Unlearning (MU) has emerged as a new paradigm for forgetting data samples from a given model. However, existing MU methods have focused on popular classification problems, leaving the landscape of unlearning for script identification and document analysis relatively unexplored. This paper addresses this gap by proposing an MU framework for script identification in scene text scenarios, utilizing deep learning networks. We conducted extensive experiments to assess the impact of data removal on different combinations of classes, including single and multiple classes, along with varying percentages of the forget set. We implemented two unlearning strategies: retraining from scratch (US) and fine-tuning (UF) for efficient forgetting manipulation. We evaluated our approach using a tiny vision transformer variant and ConvNeXt pre-trained models for scene text script identification on the SIW-13 dataset. Our results demonstrate that fine-tuning minimizes performance degradation.en_US
dc.languageengen_US
dc.source26th Irish Machine Vision and Image Processing Conference (IMVIP 2024)en_US
dc.subject3399 Otras especialidades tecnológicas (especificar)en_US
dc.subject.otherComputer visionen_US
dc.subject.otherImage processingen_US
dc.titleWhen machine unlearning meets script identificationen_US
dc.relation.conferenceIrish Machine Vision and Image Processing Conference (26. Limerick. 2024)en_US
dc.identifier.doihttps://doi.org/10.1049/icp.2024.3330en_US
dc.relation.volume2024en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameDíaz Cabrera, Moisés-
Colección:Actas de congresos
Adobe PDF (146,69 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.