Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/134964
Title: Resilience of Phytoplankton and Microzooplankton Communities under Ocean Alkalinity Enhancement in the Oligotrophic Ocean
Authors: Xin, Xiaoke
Goldenberg, Silvan Urs
Taucher ,Jan 
Stuhr, Annegret
Aristegui, Javier 
Riebesell ,Ulf 
UNESCO Clasification: 251001 Oceanografía biológica
2510 Oceanografía
251002 Oceanografía química
Keywords: Co2 Concentrating Mechanisms
Carbon-Dioxide
Marine Diatoms
Elevated Ph
Growth, et al
Issue Date: 2024
Journal: Environmental Science & Technology 
Abstract: Ocean alkalinity enhancement (OAE) is currently discussed as a potential negative emission technology to sequester atmospheric carbon dioxide in seawater. Yet, its potential risks or cobenefits for marine ecosystems are still mostly unknown, thus hampering its evaluation for large-scale application. Here, we assessed the impacts OAE may have on plankton communities, focusing on phytoplankton and microzooplankton. In a mesocosm study in the oligotrophic subtropical North Atlantic, we investigated the response of a natural plankton community to CO2-equilibrated OAE across a gradient from ambient alkalinity (2400 mu mol kg-1) to double (4800 mu mol kg-1). Abundance and biomass of phytoplankton and microzooplankton were insensitive to OAE across all size classes (pico, nano and micro), nutritional modes (autotrophic, mixotrophic and heterotrophic) and taxonomic groups (cyanobacteria, diatoms, haptophytes, dinoflagellates, and ciliates). Consequently, plankton communities under OAE maintained their natural chlorophyll a levels, size structure, taxonomic composition and biodiversity. These findings suggest a high tolerance of phytoplankton and microzooplankton to CO2-equilibrated OAE in the oligotrophic ocean. However, alternative application schemes involving more drastic perturbations in water chemistry and nutrient-rich ecosystems require further investigation. Nevertheless, our study on idealized OAE will help develop an environmentally safe operating space for this climate change mitigation solution.
URI: http://hdl.handle.net/10553/134964
ISSN: 0013-936X
DOI: 10.1021/acs.est.4c09838
Source: Environmental Science & Technology [ISSN 0013-936X], v. 18, n. 47, p. 20918–20930, (Noviembre 2024)
Appears in Collections:Artículos
Adobe PDF (5,4 MB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.