Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/134863
DC FieldValueLanguage
dc.contributor.authorGarcía-Domínguez, Jesúsen_US
dc.contributor.authorBlanco Marigorta, Ana Maríaen_US
dc.contributor.authorDaniel Marcos, J.en_US
dc.date.accessioned2024-11-29T10:21:24Z-
dc.date.available2024-11-29T10:21:24Z-
dc.date.issued2023en_US
dc.identifier.issn2590-1745en_US
dc.identifier.urihttp://hdl.handle.net/10553/134863-
dc.description.abstractThe present study comprehensively analyses the thermodynamic performance of a zero-emissions solar driven trigeneration system using a numerical approach. The analysis is conducted from both the First and Second law of Thermodynamics viewpoints, employing a novel and coherent exergy approach. Solar parabolic trough collectors (SPTCs) provide the heat input to an organic Rankine cycle (ORC) system, while a single-effect H2O/LiBr absorption heat pump is coupled in cascade to the ORC. The proposed ORC layout is based on a single-pressure regenerated, recuperated and superheated cycle. There is divergence of opinion among researchers regarding key aspects of the exergy analysis of trigeneration systems. Therefore, this study proposes the definition of the dead state conditions for each subsystem individually, taking into account their specific constraints. Unlike temperature, specific dead state conditions for pressure and composition are defined separately. An energy-exergy parametric approach is conducted to evaluate the effects of different system parameters on the system performance. The system is also optimized following single and multi-objective approaches with different criteria. The optimum system achieve an energy efficiency of 152.4%, an exergy efficiency of 21.1%, and an electrical-exergy efficiency of 17.5%. The electricity, cooling and heating productions are 82.1 kW, 200.4 kW and 471.7 kW, respectively. The SPTCs are identified as the main source of exergy destruction, responsible for 73% of inlet exergy is destructed. In addition, the systeḿs performance is shown to be sensitive to the variations in the solar field outlet temperature and in the ORC condensation temperature. Consequently, controlling these parameters could be effectively utilized for regulating power generation as well as cooling and heating production.en_US
dc.languageengen_US
dc.relation.ispartofEnergy Conversion and Management: Xen_US
dc.sourceEnergy Conversion and Management: X [ISSN 2590-1745], n. 19 (2023)en_US
dc.subject331005 Ingeniería de procesosen_US
dc.subject.otherExergyen_US
dc.subject.otherNovel approachen_US
dc.subject.otherOrganic Rankine Cycleen_US
dc.subject.otherTrigenerationen_US
dc.titleAnalysis of a solar driven ORC-absorption based CCHP system from a novel exergy approachen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ecmx.2023.100402en_US
dc.identifier.scopus2-s2.0-85162102137-
dc.contributor.orcid0000-0001-5439-7478-
dc.contributor.orcid0000-0003-4635-7235-
dc.contributor.orcid#NODATA#-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr1,474
dc.description.sjrqQ1
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.orcid0000-0003-4635-7235-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameBlanco Marigorta, Ana María-
Appears in Collections:Artículos
Adobe PDF (3,37 MB)
Show simple item record

SCOPUSTM   
Citations

12
checked on Dec 8, 2024

WEB OF SCIENCETM
Citations

10
checked on Dec 8, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.