Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/134860
Campo DC Valoridioma
dc.contributor.authorRodríguez Esparragón, Dionisioen_US
dc.contributor.authorGamba, Paoloen_US
dc.contributor.authorMarcello Ruiz, Francisco Javieren_US
dc.date.accessioned2024-11-28T19:43:00Z-
dc.date.available2024-11-28T19:43:00Z-
dc.date.issued2024en_US
dc.identifier.issn1424-8220 1424-8220ISSN Electrónico1424-3210en_US
dc.identifier.urihttp://hdl.handle.net/10553/134860-
dc.description.abstractThe global increase in wildfires due to climate change highlights the need for accurate wildfire mapping. This study performs a proof of concept on the usefulness of SuperDove imagery for wildfire mapping. To address this topic, we present an automatic methodology that combines the use of various vegetation indices with clustering algorithms (bisecting k-means and k-means) to analyze images before and after fires, with the aim of improving the precision of the burned area and severity assessments. The results demonstrate the potential of using this PlanetScope sensor, showing that the methodology effectively delineates burned areas and classifies them by severity level, in comparison with data from the Copernicus Emergency Management Service (CEMS). Thus, the potential of the SuperDove satellite sensor constellation for fire monitoring is highlighted, despite its limitations regarding radiometric distortion and the absence of Short-Wave Infrared (SWIR) bands, suggesting that the methodology could contribute to better fire management strategies.en_US
dc.languageengen_US
dc.relation.ispartofSensors (Switzerland)en_US
dc.sourceSensors (Switzerland) [ISSN 1424-8220, eISSN 1424-3210], v. 24, n. 16, 5084, (Agosto 2024)en_US
dc.subject310608 Silviculturaen_US
dc.subject250502 Cartografía geográficaen_US
dc.subject310606 Protecciónen_US
dc.subject250402 Cartografía geodésicaen_US
dc.subject250502 Cartografía geográficaen_US
dc.subject.otherBurned-area mappingen_US
dc.subject.otherClimate changeen_US
dc.subject.otherGlobal warningen_US
dc.subject.otherK-meansen_US
dc.subject.otherPlanetScopeen_US
dc.subject.otherSeverity mappingen_US
dc.subject.otherSuperDoveen_US
dc.subject.otherVegetation indexen_US
dc.subject.otherWildfireen_US
dc.titleAutomatic Methodology for Forest Fire Mapping with SuperDove Imageryen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/s24165084en_US
dc.identifier.pmid39204781-
dc.identifier.scopus2-s2.0-85202437703-
dc.contributor.orcid0000-0002-4542-2501-
dc.contributor.orcid0000-0002-9576-6337-
dc.contributor.orcid0000-0002-9646-1017-
dc.identifier.issue16-
dc.relation.volume24en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages16en_US
dc.utils.revisionen_US
dc.date.coverdateAgosto 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4542-2501-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameRodríguez Esparragón, Dionisio-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
Colección:Artículos
Adobe PDF (9,93 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.