Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/134753
Título: Facial Emotion Recognition with Inter-Modality-Attention-Transformer-Based Self-Supervised Learning
Autores/as: Chaudhari, Aayushi
Bhatt, Chintan
Krishna, Achyut
Travieso González, Carlos Manuel 
Clasificación UNESCO: 120325 Diseño de sistemas sensores
610603 Emoción
Palabras clave: Computer vision
Contextual emotion recognition
Depth of emotional dimensionality
Inter-modality attention transformer
Multimodality, et al.
Fecha de publicación: 2023
Publicación seriada: Electronics (Switzerland) 
Resumen: Emotion recognition is a very challenging research field due to its complexity, as individual differences in cognitive–emotional cues involve a wide variety of ways, including language, expressions, and speech. If we use video as the input, we can acquire a plethora of data for analyzing human emotions. In this research, we use features derived from separately pretrained self-supervised learning models to combine text, audio (speech), and visual data modalities. The fusion of features and representation is the biggest challenge in multimodal emotion classification research. Because of the large dimensionality of self-supervised learning characteristics, we present a unique transformer and attention-based fusion method for incorporating multimodal self-supervised learning features that achieved an accuracy of 86.40% for multimodal emotion classification.
URI: http://hdl.handle.net/10553/134753
ISSN: 2079-9292
DOI: 10.3390/electronics12020288
Fuente: Electronics (Switzerland) [ISSN 2079-9292], v. 12 (2), 288, (Enero 2023)
Colección:Artículos
Adobe PDF (3,77 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.