Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/134736
Campo DC Valoridioma
dc.contributor.authorChushig-Muzo, David-
dc.contributor.authorCalero-Díaz, Hugo-
dc.contributor.authorFabelo Gómez, Himar Antonio-
dc.contributor.authorÅrsand, Eirik-
dc.contributor.authorvan Dijk, Peter Ruben-
dc.contributor.authorSoguero-Ruiz, Cristina-
dc.date.accessioned2024-11-18T18:06:10Z-
dc.date.available2024-11-18T18:06:10Z-
dc.date.issued2024-
dc.identifier.issn2076-3417-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/134736-
dc.description.abstractContinuous glucose monitoring (CGM) represents a significant advancement in diabetes management, playing an important role in glycemic control for patients with type 1 diabetes (T1D). Despite their benefits, their performance is affected by numerous factors such as the carbohydrate intake, alcohol consumption, and physical activity (PA). Among these, PA could cause hypoglycemic episodes, which might happen after exercising. In this work, two main contributions are presented. First, we extend the performance evaluation of two glucose monitoring devices, Eversense and Free Style Libre (FSL), for measuring glucose concentrations during high-intensity PA and normal daily activity (NDA). The impact of PA is investigated considering (1) different glucose ranges (hypoglycemia, euglycemia, and hyperglycemia); and (2) four time periods throughout the day (morning, afternoon, evening, and night). Second, we evaluate the effectiveness of machine learning (ML) models, including logistic regression, K-nearest neighbors, and support vector machine, to automatically detect PA in T1D individuals using glucose measurements. The performance analysis showed significant differences between glucose levels obtained in the PA and NDA period for Eversense and FSL devices, specially in the hyperglycemic range and two time intervals (morning and afternoon). Both Eversense and FSL devices present measurements with large variability during strenuous PA, indicating that their users should be cautious. However, glucose recordings provided by monitoring devices are accurate for NDA, reaching similar values to capillary glucose device. Lastly, ML-based models yielded promising results to determine when an individual has performed PA, reaching an accuracy value of 0.93. The results can be used to develop an individualized data-driven classifier for each patient that categorizes glucose profiles based on the time interval during the day and according to if a patient performs PA. Our work contributes to the analysis of PA on the performance of CGM devices.-
dc.languageeng-
dc.relation.ispartofApplied Sciences (Basel)-
dc.sourceApplied Sciences (Switzerland)[EISSN 2076-3417],v. 14 (21), (Octubre 2024)-
dc.subject32 Ciencias médicas-
dc.subject3205 Medicina interna-
dc.subject3314 Tecnología médica-
dc.subject.otherContinuous Glucose Monitoring-
dc.subject.otherMachine Learning-
dc.subject.otherPhysical Activity-
dc.subject.otherTabpfn-
dc.subject.otherType 1 Diabetes-
dc.titleCharacterizing the Impact of Physical Activity on Patients with Type 1 Diabetes Using Statistical and Machine Learning Models-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.3390/app14219870-
dc.identifier.scopus85208508609-
dc.identifier.isi001351082300001-
dc.contributor.orcid0000-0001-5585-2305-
dc.contributor.orcid0000-0002-4742-5095-
dc.contributor.orcid0000-0002-9794-490X-
dc.contributor.orcid0000-0002-9520-1408-
dc.contributor.orcid0000-0002-9702-6551-
dc.contributor.orcid0000-0001-5817-989X-
dc.contributor.authorscopusid57218569405-
dc.contributor.authorscopusid57988318000-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid10038960900-
dc.contributor.authorscopusid55544741600-
dc.contributor.authorscopusid55207356700-
dc.identifier.eissn2076-3417-
dc.identifier.issue21-
dc.relation.volume14-
dc.investigacionCiencias de la Salud-
dc.type2Artículo-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages21-
dc.utils.revision-
dc.contributor.wosstandardWOS:Chushig-Muzo, D-
dc.contributor.wosstandardWOS:Calero-Díaz, H-
dc.contributor.wosstandardWOS:Fabelo, H-
dc.contributor.wosstandardWOS:Arsand, E-
dc.contributor.wosstandardWOS:van Dijk, PR-
dc.contributor.wosstandardWOS:Soguero-Ruiz, C-
dc.date.coverdateOctubre 2024-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-MED-
dc.description.sjr0,508-
dc.description.jcr2,5-
dc.description.sjrqQ2-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds10,5-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameÅrsand Orcid 0000-0002-9520-1408,Eirik-
Colección:Artículos
Adobe PDF (1,39 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.