Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/134721
Campo DC Valoridioma
dc.contributor.authorLuna-Rivera, J. M.en_US
dc.contributor.authorRabadán, José A.en_US
dc.contributor.authorRufo, Julioen_US
dc.contributor.authorGuerra, Victoren_US
dc.contributor.authorGutierrez, C. A.en_US
dc.contributor.authorPerez-Jimenez, Rafaelen_US
dc.date.accessioned2024-11-18T09:55:34Z-
dc.date.available2024-11-18T09:55:34Z-
dc.date.issued2024en_US
dc.identifier.issn2475-6415en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/134721-
dc.description.abstractThis paper investigates the potential of end-to-end learning as a means to improve the performance and reliability of wireless communication systems. Unlike traditional approaches that rely on manual feature extraction and engineering, a process that is time consuming and requires specialized expertise, end-to-end learning promises to streamline the design of communication systems. The aim is to reduce the complexity of signal processing algorithms, bolster system robustness against environmental conditions, and enable more efficient bandwidth utilization. Specifically, this study focuses on leveraging end-to-end learning to improve underwater visible light communication (VLC) systems. Facilitates the automatic learning of complex mappings between input signals and output symbols, eliminating the need for manually crafted features or prior channel knowledge. This method is expected to overcome the challenges inherent in traditional signal processing techniques, such as sensitivity to channel variations and environmental disturbances, paving the way for the development of more efficient and resilient underwater communication systems. Importantly, the model's capability to be trained on large datasets is critical in underwater environments, where data availability is often scarce.en_US
dc.languageengen_US
dc.source2024 14Th International Symposium On Communication Systems, Networks And Digital Signal Processing, 2024 [ISSN 2475-6415]en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherUnderwater Vlcen_US
dc.subject.otherAutoencoderen_US
dc.subject.otherNeural Networksen_US
dc.subject.otherMachine Learningen_US
dc.titleEnhancing Underwater Visible Light Communication with End-to-End Learning Techniquesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference14th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP 2024 )en_US
dc.identifier.doi10.1109/CSNDSP60683.2024.10636487en_US
dc.identifier.isi001324588800098-
dc.description.lastpage523en_US
dc.description.firstpage518en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid60012930-
dc.contributor.daisngid60912863-
dc.contributor.daisngid62024369-
dc.contributor.daisngid42558224-
dc.contributor.daisngid46521126-
dc.contributor.daisngid64800798-
dc.description.numberofpages6en_US
dc.utils.revisionNoen_US
dc.contributor.wosstandardWOS:Luna-Rivera, JM-
dc.contributor.wosstandardWOS:Rabadan, J-
dc.contributor.wosstandardWOS:Rufo, J-
dc.contributor.wosstandardWOS:Guerra, V-
dc.contributor.wosstandardWOS:Gutierrez, CA-
dc.contributor.wosstandardWOS:Perez-Jimenez, R-
dc.date.coverdate2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Fotónica y Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Fotónica y Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptGIR IDeTIC: División de Fotónica y Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptGIR IDeTIC: División de Fotónica y Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-9994-4495-
crisitem.author.orcid0000-0002-2269-6729-
crisitem.author.orcid0000-0002-6264-7577-
crisitem.author.orcid0000-0002-8849-592X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRabadán Borges, José Alberto-
crisitem.author.fullNameRufo Torres,Julio Francisco-
crisitem.author.fullNameGuerra Yanez, Victor-
crisitem.author.fullNamePérez Jiménez, Rafael-
crisitem.event.eventsstartdate17-07-2024-
crisitem.event.eventsenddate19-07-2024-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.