Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/134515
Campo DC Valoridioma
dc.contributor.authorGómez Déniz, Emilioen_US
dc.contributor.authorCalderín Ojeda,Enriqueen_US
dc.date.accessioned2024-10-24T12:12:07Z-
dc.date.available2024-10-24T12:12:07Z-
dc.date.issued2021en_US
dc.identifier.issn2227-9091en_US
dc.identifier.urihttp://hdl.handle.net/10553/134515-
dc.description.abstractA comprehensive auto insurance policy usually provides the broadest protection for the most common events for which the policyholder would file a claim. On the other hand, some insurers offer extended third-party car insurance to adapt to the personal needs of every policyholder. The extra coverage includes cover against fire, natural hazards, theft, windscreen repair, and legal expenses, among some other coverages that apply to specific events that may cause damage to the insured’s vehicle. In this paper, a multivariate distribution, based on a conditional specification, is proposed to account for different numbers of claims for different coverages. Then, the premium is computed for each type of coverage separately rather than for the total claims number. Closed-form expressions are given for moments and cross-moments, parameter estimates, and for a priori premiums when different premiums principles are considered. In addition, the severity of claims can be incorporated into this multivariate model to derive multivariate claims’ severity distributions. The model is extended by developing a zero-inflated version. Regression models for both multivariate families are derived. These models are used to fit a real auto insurance portfolio that includes five types of coverage. Our findings show that some specific covariates are statistically significant in some coverages, yet they are not so for others.en_US
dc.languageengen_US
dc.relation.ispartofRisksen_US
dc.sourceRisks [ISSN 2227-9091], v. 9, 137, (Julio 2021)en_US
dc.subject53 Ciencias económicasen_US
dc.subject.otherAutomobile insuranceen_US
dc.subject.otherConditional distributionen_US
dc.subject.otherCoverageen_US
dc.subject.otherInsurance pricingen_US
dc.subject.otherMultivariate zero-inflated modelsen_US
dc.subject.otherRegressionen_US
dc.titleA Priori Ratemaking Selection Using Multivariate Regression Models Allowing Different Coverages in Auto Insuranceen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/risks9070137en_US
dc.identifier.scopus2-s2.0-85111597709-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue7-
dc.relation.volume9en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.description.numberofpages18en_US
dc.utils.revisionen_US
dc.date.coverdateJulio 2021en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-ECOen_US
dc.description.sjr0,398
dc.description.sjrqQ2
dc.description.esciESCI
dc.description.miaricds9,4
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.orcid0000-0002-5072-7908-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNameGómez Déniz, Emilio-
crisitem.author.fullNameCalderín Ojeda,Enrique-
Colección:Artículos
Adobe PDF (487,54 kB)
Vista resumida

Citas SCOPUSTM   

9
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

8
actualizado el 24-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.