Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/134464
Campo DC Valoridioma
dc.contributor.authorDíaz Ojeda, Héctor Rubénen_US
dc.contributor.authorMorán Guerrero, Amadeoen_US
dc.contributor.authorGonzález Gutierrez, Leo Miguelen_US
dc.contributor.authorOliva Remolá, Adrianaen_US
dc.date.accessioned2024-10-18T15:48:49Z-
dc.date.available2024-10-18T15:48:49Z-
dc.date.issued2018en_US
dc.identifier.issn0029-8018en_US
dc.identifier.urihttp://hdl.handle.net/10553/134464-
dc.description.abstractAt model scale propellers, conventional turbulence models assume turbulent regimes all over the blade surface, and consequently do not obtain accurate predictions that can be compared to experimental results. Two aspects could be improved in order to produce a better description of the flow complexity generated in these turbulent rotating systems: the inclusion of transition phenomena assumptions that normally take place in these flows and a particular modeling of those transition mechanisms, such as cross flow, that appear at model scale propellers. In this paper, a new modified γ Reθ correlation-based model for transition prediction, that takes into account crossflow effects is applied to model scale ship propellers for a wide range of advanced ratios, and its results are compared to their corresponding experimental results. The average values of the skin friction coefficients on different parts of the blade and the streamlines distribution are studied and compared between different pro- pellers. The results obtained with these improvements show an agreement of about 1% in terms of efficiency, and below 5% in terms of thrust and torque coefficients when compared to the experimental results at the design point. The dependance of the cross flow mechanism on the Reynolds number is studied by changing the rotating velocity of the different propellers. Results show that the relevance of this mechanism grows when the rotating velocity, the centrifugal forces and Reynolds number increase. Consequently, when the Reynolds numbers grows, the cross flow transition mechanism is stimulated by the action of the centrifugal forces.en_US
dc.languageengen_US
dc.relation.ispartofOcean Engineeringen_US
dc.sourceOcean Engineering [0029-8018], v. 156, p. 101-119en_US
dc.subject331910 Hélicesen_US
dc.subject331912 Construcción navalen_US
dc.subject220404 Mecánica de fluidosen_US
dc.titleOn the influence of transition modeling and crossflow effects on open water propeller simulationsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.oceaneng.2018.02.068en_US
dc.description.lastpage119en_US
dc.description.firstpage101en_US
dc.relation.volumeV. 156en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages19 p.en_US
dc.utils.revisionen_US
dc.date.coverdate2018en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr1,28
dc.description.jcr2,73
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0001-8045-0156-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameDíaz Ojeda, Héctor Rubén-
Colección:Artículos
Adobe PDF (7,19 MB)
Vista resumida

Citas de WEB OF SCIENCETM
Citations

23
actualizado el 24-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.