Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/134391
DC FieldValueLanguage
dc.contributor.authorNiewiadomska, Alicjaen_US
dc.contributor.authorMaczuga, Pawełen_US
dc.contributor.authorOliver Serra, Alberten_US
dc.contributor.authorSiwik, Leszeken_US
dc.contributor.authorSepulveda-Salaz, Paulinaen_US
dc.contributor.authorPaszyńska, Annaen_US
dc.contributor.authorPaszyński, Maciejen_US
dc.contributor.authorPingali, Keshaven_US
dc.date.accessioned2024-10-10T08:12:50Z-
dc.date.available2024-10-10T08:12:50Z-
dc.date.issued2024en_US
dc.identifier.isbn9783031637537en_US
dc.identifier.issn0302-9743en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/134391-
dc.description.abstractThe Chilean coast is a very seismically active region. In the 21st century, the Chilean region experienced 19 earthquakes with a magnitude of 6.2 to 8.8, where 597 people were killed. The most dangerous earthquakes occur at the bottom of the ocean. The tsunamis they cause are very dangerous for residents of the surrounding coasts. In 2010, as many as 525 people died in a destructive tsunami caused by an underwater earthquake. Our research paper aims to develop a tsunami simulator based on the modern methodology of Physics Informed Neural Networks (PINN). We test our model using a tsunami caused by a hypothetical earthquake off the coast of the densely populated area of Valparaiso, Chile. We employ a longest-edge refinement algorithm expressed by graph transformation rules to generate a sequence of triangular computational meshes approximating the seabed and seashore of the Valparaiso area based on the Global Multi-Resolution Topography Data available. For the training of the PINN, we employ points from the vertices of the generated triangular mesh.en_US
dc.languageengen_US
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 14833 LNCS, p. 204-218, (Enero 2024)en_US
dc.subjectInvestigaciónen_US
dc.titleModeling Tsunami Waves at the Coastline of Valparaiso Area of Chile with Physics Informed Neural Networksen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference24th International Conference on Computational Science, ICCS 2024en_US
dc.identifier.doi10.1007/978-3-031-63751-3_14en_US
dc.identifier.scopus85199143858-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-5111-6981-
dc.contributor.orcid0000-0002-3783-8670-
dc.contributor.orcid0000-0003-0535-7220-
dc.contributor.orcid0000-0002-7146-2240-
dc.contributor.orcid0000-0002-0716-0619-
dc.contributor.orcid0000-0001-7766-6052-
dc.contributor.orcid0000-0002-0484-4636-
dc.contributor.authorscopusid58897129000-
dc.contributor.authorscopusid57806951800-
dc.contributor.authorscopusid59228155200-
dc.contributor.authorscopusid14054857500-
dc.contributor.authorscopusid59227717100-
dc.contributor.authorscopusid24386032200-
dc.contributor.authorscopusid23393712700-
dc.contributor.authorscopusid7003277701-
dc.identifier.eissn1611-3349-
dc.description.lastpage218en_US
dc.description.firstpage204en_US
dc.relation.volume14833 LNCSen_US
dc.investigacionCienciasen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2024en_US
dc.identifier.conferenceidevents155431-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-3783-8670-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameOliver Serra, Albert-
Appears in Collections:Actas de congresos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.