Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/133384
Title: Visible-light-active iodide-doped BiOBr coatings for sustainable Infrastructure
Authors: Wang, Mingyue
Quesada Cabrera, Raúl 
Sathasivam, Sanjayan
Blunt, Matthew O.
Borowiec, Joanna
Carmalt, Claire J.
UNESCO Clasification: 221001 Catálisis
221001 Catálisis
Keywords: Aerosol assisted chemical vapor deposition (AACVD)
Iodide-doped BiOBr thin films
Resazurin ink
Self cleaning windows
Visible light photocatalysis
Issue Date: 2023
Journal: ACS Applied Materials & Interfaces 
Abstract: The search for efficient materials for sustainable infrastructure is an urgent challenge toward potential negative emission technologies and the global environmental crisis. Pleasant, efficient sunlight-activated coatings for applications in self-cleaning windows are sought in the glass industry, particularly those produced from scalable technologies. The current work presents visible-light-active iodide-doped BiOBr thin films fabricated using aerosol-assisted chemical vapor deposition. The impact of dopant concentration on the structural, morphological, and optical properties was studied systematically. The photocatalytic properties of the parent materials and as-deposited doped films were evaluated using the smart ink test. An optimized material was identified as containing 2.7 atom % iodide dopant. Insight into the photocatalytic behavior of these coatings was gathered from photoluminescence and photoelectrochemical studies. The optimum photocatalytic performance could be explained from a balance between photon absorption, charge generation, carrier separation, and charge transport properties under 450 nm irradiation. This optimized iodide-doped BiOBr coating is an excellent candidate for the photodegradation of volatile organic pollutants, with potential applications in self-cleaning windows and other surfaces.
URI: http://hdl.handle.net/10553/133384
ISSN: 1944-8244
DOI: 10.1021/acsami.3c11525
Source: ACS Applied Materials & Interfaces [ISSN 1944-8244], v. 15, n. 42, p. 49270 - 49280
Appears in Collections:Artículos
Adobe PDF (10,83 MB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.