Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/133375
DC FieldValueLanguage
dc.contributor.authorGiazitzis, Alexios-
dc.contributor.authorDiaz, Moises-
dc.contributor.authorZois, Elias N.-
dc.contributor.authorFerrer, Miguel A.-
dc.date.accessioned2024-10-03T08:05:25Z-
dc.date.available2024-10-03T08:05:25Z-
dc.date.issued2024-
dc.identifier.isbn9783031705359-
dc.identifier.issn0302-9743-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/133375-
dc.description.abstractSignature verification is a popular research area. SigmML, a new system for offline, writer-independent verification, has been developed, offering a unique approach outside typical Euclidean network learning methods. This verifier operates in the space of symmetric positive definite matrices and has demonstrated promising preliminary state-of-the-art results in intra and cross lingual dataset experiments. However, any offline automatic signature verifier faces a potential vulnerability: susceptibility to massive attacks using synthetic signatures. This concern becomes more pronounced given the significant advancements in handwritten image generation techniques. To evaluate the threat level of synthetic attacks to the original version of SigmML, we assess its performance under several attack profiles involving the duplication of synthetically questioned signatures, which are used during the test stage. These profiles advance the threat level to the SigmML verifier by refining the output of the duplicator with a quality control mechanism which intuitively adapts the a-priori knowledge of the intra-variability of each writer. In our experiments, we considered signatures written in various countries and styles, including specimens in Western, Devanagari, and Bengali scripts. Quantitatively, we demonstrate this delicate security issue in the context of signature verification. The proposed attack profiles significantly degrade the performance of SigmML, surpassing the results obtained against skilled forgery experiments by more than double.-
dc.languageeng-
dc.relation.ispartofDocument Analysis And Recognition-Icdar 2024, Pt Ii-
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 14805 LNCS, p. 216-232, (Enero 2024)-
dc.subject33 Ciencias tecnológicas-
dc.subject.otherOffline Signature Verification-
dc.subject.otherPerformance Evaluation-
dc.subject.otherRiemannian Manifold-
dc.subject.otherSigmml-
dc.subject.otherSynthetic Signature Attack-
dc.titleJanus-Faced Handwritten Signature Attack: A Clash Between a Handwritten Signature Duplicator and a Writer Independent, Metric Meta-learning Offline Signature Verifier-
dc.typeinfo:eu-repo/semantics/conferenceObject-
dc.typeConferenceObject-
dc.relation.conference18th International Conference on Document Analysis and Recognition (ICDAR 2024)-
dc.identifier.doi10.1007/978-3-031-70536-6_13-
dc.identifier.scopus85204351283-
dc.identifier.isi001336392000013-
dc.contributor.orcid0009-0009-0467-0005-
dc.contributor.orcid0000-0003-3878-3867-
dc.contributor.orcid0000-0001-9483-1080-
dc.contributor.orcid0000-0002-2924-1225-
dc.contributor.authorscopusid59012129100-
dc.contributor.authorscopusid58552611900-
dc.contributor.authorscopusid55917353000-
dc.contributor.authorscopusid55636321172-
dc.identifier.eissn1611-3349-
dc.description.lastpage232-
dc.description.firstpage216-
dc.relation.volume14805 LNCS-
dc.investigacionIngeniería y Arquitectura-
dc.type2Actas de congresos-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages17-
dc.utils.revision-
dc.contributor.wosstandardWOS:Giazitzis, A-
dc.contributor.wosstandardWOS:Diaz, M-
dc.contributor.wosstandardWOS:Zois, EN-
dc.contributor.wosstandardWOS:Ferrer, MA-
dc.date.coverdateEnero 2024-
dc.identifier.conferenceidevents155448-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Appears in Collections:Actas de congresos
Show simple item record

WEB OF SCIENCETM
Citations

1
checked on Mar 30, 2025

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.