Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/133346
Campo DC Valoridioma
dc.contributor.authorCarta, Salvatoreen_US
dc.contributor.authorCastrillon-Santana, Modestoen_US
dc.contributor.authorMarras, Mirkoen_US
dc.contributor.authorMohamed, Sondosen_US
dc.contributor.authorPodda, Alessandro Sebastianen_US
dc.contributor.authorSaia, Robertoen_US
dc.contributor.authorSau, Marcoen_US
dc.contributor.authorZimmer, Walteren_US
dc.date.accessioned2024-10-02T08:41:49Z-
dc.date.available2024-10-02T08:41:49Z-
dc.date.issued2024en_US
dc.identifier.isbn9798400704666en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/133346-
dc.description.abstractUtilizing monocular cameras for 3D object understanding is widely recognized as a cost-effective approach, spanning applications such as autonomous driving, augmented/virtual reality or roadside monitoring. Despite recent progress, persistent challenges arise in creating generalized models adaptable to unforeseen scenarios and diverse camera configurations. In this work, we focus on the task of monocular 3D object detection within roadside environments. To begin, we introduce a versatile methodology for generating and labeling datasets tailored to roadside scenarios, addressing limitations encountered in real-world settings. Subsequently, we develop an array of deep learning models tailored to this task, refining them to address practical challenges that emerge during real-world application. Lastly, leveraging our framework, we curated a synthetic benchmark dataset comprising 1,415,680 frames and 8,902,636 labeled 3D objects, ultimately assessing the performance of existing models across all datasets.en_US
dc.languageengen_US
dc.sourceAdjunct Proceedings Of The 32Nd Acm Conference On User Modeling, Adaptation And Personalization, Umap 2024, p. 452-459, (2024)en_US
dc.subject120317 Informáticaen_US
dc.subject.otherCamera Calibrationen_US
dc.subject.other3D Object Detectionen_US
dc.subject.otherRoadside Dataseten_US
dc.subject.otherMonocular 3D Perceptionen_US
dc.titleRoadSense3D: A Framework for Roadside Monocular 3D Object Detectionen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference32nd ACM Conference on User Modeling, Adaptation and Personalization (ACM UMAP 2024)en_US
dc.identifier.doi10.1145/3631700.3665236en_US
dc.identifier.scopus85198958907-
dc.identifier.isi001263797000078-
dc.contributor.orcid0000-0001-9481-511X-
dc.contributor.orcid0000-0002-8673-2725-
dc.contributor.orcid0000-0003-1989-6057-
dc.contributor.orcid0009-0002-5647-6895-
dc.contributor.orcid0000-0002-7862-8362-
dc.contributor.orcid0000-0002-1734-0437-
dc.contributor.orcid0009-0001-7934-9787-
dc.contributor.orcid0000-0003-4565-1272-
dc.contributor.authorscopusid7004254388-
dc.contributor.authorscopusid57218418238-
dc.contributor.authorscopusid59224398500-
dc.contributor.authorscopusid57193795607-
dc.contributor.authorscopusid56875324700-
dc.contributor.authorscopusid56029094200-
dc.contributor.authorscopusid59224775600-
dc.contributor.authorscopusid57607056800-
dc.description.lastpage459en_US
dc.description.firstpage452en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages8en_US
dc.utils.revisionNoen_US
dc.contributor.wosstandardWOS:Carta, S-
dc.contributor.wosstandardWOS:Castrillón-Santana, M-
dc.contributor.wosstandardWOS:Marras, M-
dc.contributor.wosstandardWOS:Mohamed, S-
dc.contributor.wosstandardWOS:Podda, AS-
dc.contributor.wosstandardWOS:Saia, R-
dc.contributor.wosstandardWOS:Sau, M-
dc.contributor.wosstandardWOS:Zimmer, W-
dc.date.coverdate2024en_US
dc.identifier.conferenceidevents155431-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.