Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/133346
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Carta, Salvatore | en_US |
dc.contributor.author | Castrillon-Santana, Modesto | en_US |
dc.contributor.author | Marras, Mirko | en_US |
dc.contributor.author | Mohamed, Sondos | en_US |
dc.contributor.author | Podda, Alessandro Sebastian | en_US |
dc.contributor.author | Saia, Roberto | en_US |
dc.contributor.author | Sau, Marco | en_US |
dc.contributor.author | Zimmer, Walter | en_US |
dc.date.accessioned | 2024-10-02T08:41:49Z | - |
dc.date.available | 2024-10-02T08:41:49Z | - |
dc.date.issued | 2024 | en_US |
dc.identifier.isbn | 9798400704666 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/133346 | - |
dc.description.abstract | Utilizing monocular cameras for 3D object understanding is widely recognized as a cost-effective approach, spanning applications such as autonomous driving, augmented/virtual reality or roadside monitoring. Despite recent progress, persistent challenges arise in creating generalized models adaptable to unforeseen scenarios and diverse camera configurations. In this work, we focus on the task of monocular 3D object detection within roadside environments. To begin, we introduce a versatile methodology for generating and labeling datasets tailored to roadside scenarios, addressing limitations encountered in real-world settings. Subsequently, we develop an array of deep learning models tailored to this task, refining them to address practical challenges that emerge during real-world application. Lastly, leveraging our framework, we curated a synthetic benchmark dataset comprising 1,415,680 frames and 8,902,636 labeled 3D objects, ultimately assessing the performance of existing models across all datasets. | en_US |
dc.language | eng | en_US |
dc.source | Adjunct Proceedings Of The 32Nd Acm Conference On User Modeling, Adaptation And Personalization, Umap 2024, p. 452-459, (2024) | en_US |
dc.subject | 120317 Informática | en_US |
dc.subject.other | Camera Calibration | en_US |
dc.subject.other | 3D Object Detection | en_US |
dc.subject.other | Roadside Dataset | en_US |
dc.subject.other | Monocular 3D Perception | en_US |
dc.title | RoadSense3D: A Framework for Roadside Monocular 3D Object Detection | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | 32nd ACM Conference on User Modeling, Adaptation and Personalization (ACM UMAP 2024) | en_US |
dc.identifier.doi | 10.1145/3631700.3665236 | en_US |
dc.identifier.scopus | 85198958907 | - |
dc.identifier.isi | 001263797000078 | - |
dc.contributor.orcid | 0000-0001-9481-511X | - |
dc.contributor.orcid | 0000-0002-8673-2725 | - |
dc.contributor.orcid | 0000-0003-1989-6057 | - |
dc.contributor.orcid | 0009-0002-5647-6895 | - |
dc.contributor.orcid | 0000-0002-7862-8362 | - |
dc.contributor.orcid | 0000-0002-1734-0437 | - |
dc.contributor.orcid | 0009-0001-7934-9787 | - |
dc.contributor.orcid | 0000-0003-4565-1272 | - |
dc.contributor.authorscopusid | 7004254388 | - |
dc.contributor.authorscopusid | 57218418238 | - |
dc.contributor.authorscopusid | 59224398500 | - |
dc.contributor.authorscopusid | 57193795607 | - |
dc.contributor.authorscopusid | 56875324700 | - |
dc.contributor.authorscopusid | 56029094200 | - |
dc.contributor.authorscopusid | 59224775600 | - |
dc.contributor.authorscopusid | 57607056800 | - |
dc.description.lastpage | 459 | en_US |
dc.description.firstpage | 452 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.description.numberofpages | 8 | en_US |
dc.utils.revision | No | en_US |
dc.contributor.wosstandard | WOS:Carta, S | - |
dc.contributor.wosstandard | WOS:Castrillón-Santana, M | - |
dc.contributor.wosstandard | WOS:Marras, M | - |
dc.contributor.wosstandard | WOS:Mohamed, S | - |
dc.contributor.wosstandard | WOS:Podda, AS | - |
dc.contributor.wosstandard | WOS:Saia, R | - |
dc.contributor.wosstandard | WOS:Sau, M | - |
dc.contributor.wosstandard | WOS:Zimmer, W | - |
dc.date.coverdate | 2024 | en_US |
dc.identifier.conferenceid | events155431 | - |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0002-8673-2725 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Castrillón Santana, Modesto Fernando | - |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.