Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/132744
Título: Optimal 4E evaluation of an innovative solar-wind cogeneration system for sustainable power and fresh water production based on integration of microbial desalination cell, humidification- dehumidification, and reverse osmosis desalination
Autores/as: Manesh, Mohammad Hasan Khoshgoftar
Davadgaran, Sepehr
Rabeti, Seyed Alireza Mousavi
Blanco Marigorta, Ana María 
Clasificación UNESCO: 3322 Tecnología energética
3303 ingeniería y tecnología químicas
Palabras clave: Life-Cycle Assessment
Environmental-Analyses
Hdh Desalination
Exergy Analyses
Energy, et al.
Fecha de publicación: 2024
Proyectos: Investigación e innovación hacia la Excelencia en Eficiencia tecnológica, uso de Energías renovables, tecnologías Emergentes y Economía circular en la DESalación 
Publicación seriada: Energy 
Resumen: Reliable freshwater production is vital for tackling two of the most critical challenges the world is facing today: climate change and sustainable development. Present work presents an innovative cogeneration system based on solar and wind energies for sustainable production of freshwater, power, and wastewater treatment. For freshwater production and wastewater treatment in this system, the integration of a microbial desalination cell with a humidification-dehumidification and reverse osmosis desalinations has been used. The mentioned systems provide their heat demand from solar energy, and when solar radiation is unable to provide this heat, a hydrogen internal combustion engine drive produces the required heat for the freshwater plant. Excess heat from the hydrogen internal combustion engine is fed into the organic Rankine cycle for more power generation in the whole system to reduce system waste heat and increase efficiency. PEM electrolyzer has been used to supply the hydrogen needed by the internal combustion engine, and this system uses wind turbines to supply the power demand. To evaluate the performance of the whole system, energy, exergy, exergeoeconomic, and exergoenvironmental (4E) analyses have been carried out. Finally, to improve the performance parameters of the system, multi-objective optimization using the Salp swarm algorithm has been used. Investigation of the results show that the proposed system can produce 720 kW of electricity and 5.36 m3/h 3 /h of freshwater. The energy efficiency of the system is 22.09 %, and its overall cost rate and overall environmental impact rate are 540.33 $/hr and 17.37 Pt/h, respectively. Among the qualitative results obtained in this research, it is possible to mention the high exergy destruction, cost destruction, and environmental impact destruction of the internal combustion engine compared to other equipment used in the proposed system, and this point shows the need to improve this equipment, similar to previous researches. The five-objective optimization results of the proposed system showed that the performance parameters of the system, such as polygeneration energy efficiency, total cost rate, and total environmental impact rate, can be improved by 6.2 %, 1.44 %, and 0.52 %, respectively. The payback period of the proposed system in the optimal state is 6.95 years.
URI: http://hdl.handle.net/10553/132744
ISSN: 0360-5442
DOI: 10.1016/j.energy.2024.131256
Fuente: Energy [ISSN 0360-5442], v. 297, (Junio 2024)
Colección:Artículos
Adobe PDF (11,87 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.