Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/132122
Campo DC Valoridioma
dc.contributor.authorAlvarado, Ricardoen_US
dc.contributor.authorSuarez, Alvaroen_US
dc.date.accessioned2024-07-15T07:24:08Z-
dc.date.available2024-07-15T07:24:08Z-
dc.date.issued2024en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/132122-
dc.description.abstractUniversity campus networks need wired (ethernet) and dense wireless fidelity networks that have devices like access points, switches, and routers that are always turned on. Consequently, they generate two important problems: the energy bill and the influence of carbon dioxide into the atmosphere. Energy savings are the solution to those problems. There are several proposals to augment the energy savings separately in ethernet and wireless fidelity, but there is no integrated method to simultaneously reduce them in both parts of the networks. Our novel method combines idle cycling and machine learning techniques to efficiently obtain energy savings in both parts of the network simultaneously. We categorize network devices into two groups: (a) those that are always turned on and (b) those that can be dynamically turned on or off based on network performance. We formulated two algorithms that decide when to turn on and off access points. We use Ward’s machine learning hierarchical clustering technique to optimize the energy savings of our model in the network of the Unidades Tecnológicas de Santander (Bucaramanga, Colombia). We showed that energy savings of 21.5 kWh per day are possible. The success of the model in this context highlights its potential to achieve substantial energy savings.en_US
dc.languageengen_US
dc.relation.ispartofFacetsen_US
dc.sourceFacets[EISSN 2371-1671],v. 9, p. 1-19, (Enero 2024)en_US
dc.subject3325 Tecnología de las telecomunicacionesen_US
dc.subject.otherDense Wifi Networken_US
dc.subject.otherEnergy Savingsen_US
dc.subject.otherGreen Networksen_US
dc.subject.otherHierarchical Clusteringen_US
dc.titleA novel energy-saving method for campus wired and dense WiFi network applying machine learning and idle cycling techniquesen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1139/facets-2023-0164en_US
dc.identifier.scopus85193848987-
dc.contributor.orcid0000-0003-3096-2174-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid59137645600-
dc.contributor.authorscopusid7202765632-
dc.identifier.eissn2371-1671-
dc.description.lastpage19en_US
dc.description.firstpage1en_US
dc.relation.volume9en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,847
dc.description.jcr3,1
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.esciESCI
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Arquitectura y Concurrencia-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.orcid0000-0002-3043-7161-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSuárez Sarmiento, Álvaro-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.