Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/132121
DC FieldValueLanguage
dc.contributor.authorSuárez-Araujo, Carmen Pazen_US
dc.contributor.authorCabrera-León, Ylermien_US
dc.contributor.authorFernández-López, Pabloen_US
dc.contributor.authorGarcía Baez, Patricioen_US
dc.date.accessioned2024-07-15T07:20:14Z-
dc.date.available2024-07-15T07:20:14Z-
dc.date.issued2024en_US
dc.identifier.issn2300-1933en_US
dc.identifier.urihttp://hdl.handle.net/10553/132121-
dc.description.abstractThe prevalence of dementia is expected to increment in the next decades as the elderly population grows and ages. Hence, Alzheimer’s Disease (AD), as the most frequent dementia, will be more problematic from a socioeconomic point of view. Different diagnostic criteria have been proposed by clinicians for the early diagnosis of AD. After discarding the longitudinal and prognosis articles, a selection of articles from the last decade and based on Artificial Neural Networks (ANNs) was collated from the PubMed database, and complemented with researches extracted from others. The latest trends on this field were discovered in these selected articles, which were later discussed. Only articles based whether on shallow ANNs, Deep Learning (DL) or a mix of both were included. The total number of cross-sectional articles that complied with our selection criteria was 154. Convolutional Neural Networks (CNNs) combined with neuroimaging has been the most popular approach, yielding very good performance results. Approaches based on nonneuroimaging techniques, such as gait, genetics, speech and neuropsychological tests, were less common but have their own advantages. Multimodality solutions may become even more prevalent in the near future. Similarly, novel diagnostic criteria will appear and the popularity of currently not-so-common ones will expand. A new proposal emerged from these trends, which is based on ontogenetic ANNs.en_US
dc.languageengen_US
dc.relationInvestigación en Computación Neuronal por grupo de investigación CIPERBIGen_US
dc.relation.ispartofInternational Journal of Electronics and Telecommunicationsen_US
dc.sourceInternational Journal of Electronics and Telecommunications. Vol. 70, Nº 2 (2024)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherAlzheimer’s Diseaseen_US
dc.subject.otherMild Cognitive Impairmenten_US
dc.subject.otherComputer-Aided Diagnosisen_US
dc.subject.otherArtificial Neural Networken_US
dc.subject.otherDeep Learningen_US
dc.titleCurrent trends on the early diagnosis of Alzheimer’s Disease by means of neural computation methodsen_US
dc.identifier.doi10.24425/ijet.2024.149542en_US
dc.description.lastpage283en_US
dc.description.firstpage277en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,2
dc.description.sjrqQ4
dc.description.esciESCI
dc.description.miaricds9,5
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.orcid0000-0002-8826-0899-
crisitem.author.orcid0000-0001-5709-2274-
crisitem.author.orcid0000-0002-2135-6095-
crisitem.author.orcid0000-0002-9973-5319-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSuárez Araujo, Carmen Paz-
crisitem.author.fullNameCabrera León, Ylermi-
crisitem.author.fullNameFernández López, Pablo Carmelo-
crisitem.author.fullNameGarcía Baez, Patricio-
Appears in Collections:Artículos
Adobe PDF (351,28 kB)
Show simple item record

Page view(s)

39
checked on Sep 28, 2024

Download(s)

15
checked on Sep 28, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.