Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/131972
Title: Neural Network-Based Detection of OCC Signals in Lighting-Constrained Environments: A Museum Use Case
Authors: Rufo, Saray
Aguiar-Castillo, Lidia 
Rufo Torres,Julio Francisco 
Perez-Jimenez, Rafael 
UNESCO Clasification: 3325 Tecnología de las telecomunicaciones
Keywords: Convolutional Neural Networks
Indoor Positioning
Lighting Constraints
Optical Camera Communication
Simulation
Issue Date: 2024
Journal: Electronics (Switzerland) 
Abstract: This research presents a novel approach by applying convolutional neural networks (CNNs) to enhance optical camera communication (OCC) signal detection under challenging indoor lighting conditions. The study utilizes a smartphone app to capture images of an LED lamp that emits 25 unique optical codes at distances of up to four meters. The developed CNN model demonstrates superior accuracy and outperforms traditional methodologies, which often struggle under variable illumination. This advancement provides a robust solution for reliable OCC detection where previous methods underperform, particularly in the tourism industry, where it can be used to create a virtual museum on the Unity platform. This innovation showcases the potential of integrating the application with a virtual environment to enhance tourist experiences. It also establishes a comprehensive visible light positioning (VLP) system, marking a significant advance in using CNN for OCC technology in various lighting conditions. The findings underscore the effectiveness of CNNs in overcoming ambient lighting challenges, paving the way for new applications in museums and similar environments and laying the foundation for future OCC system improvements.
URI: http://hdl.handle.net/10553/131972
ISSN: 2079-9292
DOI: 10.3390/electronics13101828
Source: Electronics (Switzerland)[EISSN 2079-9292],v. 13 (10), (Mayo 2024)
Appears in Collections:Artículos
Adobe PDF (3,38 MB)
Show full item record

SCOPUSTM   
Citations

1
checked on Dec 22, 2024

WEB OF SCIENCETM
Citations

1
checked on Dec 22, 2024

Page view(s)

17
checked on Jul 6, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.